A generalized zero-current-transition concept to simplify three-phase soft-switching inverters

Author(s):  
Yong Li ◽  
F.C. Lee
1995 ◽  
Vol 05 (04) ◽  
pp. 531-558 ◽  
Author(s):  
GUICHAO HUA ◽  
FRED C. LEE

The switched-mode power conversion technologies have evolved from the basic PWM converters to resonant converters, quasi-resonant converters, multi-resonant converters, and most recently, to soft-switching PWM converters. In this paper, several typical resonant techniques and several soft-switching PWM techniques are reviewed, and their merits and limitations are assessed. The resonant techniques reviewed include the quasi-resonant converters, multi-resonant converters, Class-E converters, and resonant dc link converters; and the soft-switching PWM techniques reviewed include the zero-voltage-switched (ZVS) quasi-square-wave converters, ZVS-PWM converters, zero-current-switched PWM converters, zero-voltage- transition PWM converters, and zero-current-transition PWM converters.


2014 ◽  
Vol 3 (3) ◽  
pp. 101-121 ◽  
Author(s):  
S. Aiswariya ◽  
R. Dhanasekaran

This paper proposes an AC-DC converter with the application of active type soft switching techniques. Boost converter with active snubber is used to achieve power factor correction. Boost converter main switch uses Zero Voltage Transition switching for turn on and Zero Current Transition switching for turn off. The active snubber auxillary switch uses Zero Current Switching for both turn on and turn off. Since all the switches of the proposed circuit are soft switched, overall component stress has been greatly reduced and the output DC voltage is expected to have low ripples. A small amount of auxillary switch current is made to flow to the output side by the help of coupling inductor. The proposed circuit is simulated using MATLAB Simulink. All the related waveforms are shown for the reference. The power factor is measured as 0.99 showing that the input current and input voltage is in phase with each other. The PFC circuit has very less number of components with smaller size and can be controlled easily at a wide line and load range.


2005 ◽  
Vol 125 (12) ◽  
pp. 1288-1297
Author(s):  
Tatsuto Kinjyo ◽  
Tomonobu Senjyu ◽  
Naomitsu Urasaki ◽  
Hideki Fujita

Sign in / Sign up

Export Citation Format

Share Document