resonant converters
Recently Published Documents


TOTAL DOCUMENTS

735
(FIVE YEARS 147)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
pp. 1091-1113
Author(s):  
Sheetal Deshmukh (Gore) ◽  
Atif Iqbal ◽  
Shirazul Islam ◽  
Irfan Khan ◽  
Mousa Marzband ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 412
Author(s):  
Yih-Her Yan ◽  
Yong-Nong Chang ◽  
Zhi-Xuan Peng

In this study, a bidirectional CL3C full-bridge resonant converter was developed using a bidirectional active bridge converter as the main framework to improve conventional LLC resonant converters. A resonant inductor and resonant capacitor were installed at the secondary side of the developed resonant converter. The bidirectional operation of this converter enables zero-voltage switching at the supply-side power switch and zero-current switching at the load side. The aforementioned phenomena enhance the overall circuit efficiency and enable the resonant tank voltage to be increased in the reverse mode, which cannot be achieved with conventional bidirectional LLC resonant converters. The electrical equipment isolation function provided by a transformer made electricity usage safer, and digital control technology was adopted to control electrical energy conversion and simulate bidirectional energy conversion. Specifically, the experiment and simulation emulated how the developed converter enables energy transmission from a DC grid to a battery energy storage system through constant current–constant voltage charging and energy transmission from a battery energy storage system to a DC grid through constant power discharging.


2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Hasaan Farooq ◽  
Hassan Abdullah Khalid ◽  
Waleed Ali ◽  
Ismail Shahid

With the expansion of renewable energy sources worldwide, the need for developing more economical and more efficient converters that can operate on a high frequency with minimal switching and conduction losses has been increased. In power electronic converters, achieving high efficiency is one of the most challenging targets to achieve. The utilization of wideband switches can achieve this goal but add additional cost to the system. LLC resonant converters are widely used in different applications of renewable energy systems, i.e., PV, wind, hydro and geothermal, etc. This type of converter has more benefits than the other converters such as high electrical isolation, high power density, low EMI, and high efficiency. In this paper, a comparison between silicon carbide (SiC) MOSFET and silicon (Si) MOSFET switches was made, by considering a 3KW half-bridge LLC converter with a wide range of input voltage. The switching losses and conduction losses were analyzed through mathematical calculations, and their authenticity was validated with the help of software simulations in PSIM. The results show that silicon carbide (SiC) MOSFETs can work more efficiently, as compared with silicon (Si) MOSFETs in high-frequency power applications. However, in low-voltage and low-power applications, Si MOSFETs are still preferable due to their low-cost advantage.


2021 ◽  
Vol 6 (4) ◽  
pp. 332-348
Author(s):  
Yuqi Wei ◽  

Conventional line frequency transformers have the disadvantages of large volume and low efficiency. The medium or high frequency transformers based on power converters can achieve high power conversion with small footprint have drawn popularity in numerous industrial applications. Unregulated resonant converters, LLC and CLLC resonant converters, with fixed voltage conversion ratio operating at resonant frequency, which are also known as DC transformers (DCXs), are attractive owning to their high efficiency characteristic. Nevertheless, there are issues associated with DCXs in real applications. Regulation capability and automatic resonant frequency tracking capability are the two most important issues for DCXs. The main work of this paper is to characterize the resonant converters based DCXs, and overview the issues and solutions associated with DCXs. Guidelines can be provided for researchers and engineers when designing the resonant converters based DCXs.


2021 ◽  
Vol 11 (23) ◽  
pp. 11350
Author(s):  
Seyed Abolfazl Mortazavizadeh ◽  
Simone Palazzo ◽  
Arturo Amendola ◽  
Enzo De Santis ◽  
Dario Di Ruzza ◽  
...  

Soft switching for both primary and secondary side devices is available by using LLC converters. This resonant converter is an ideal candidate for today’s high frequency, high efficiency, and high power density applications like adapters, Uninterrupted Power Supplies (UPS), Solid State Transformers (SST), electric vehicle battery chargers, renewable energy systems, servers, and telecom systems. Using Gallium-Nitride (GaN)-based power switches in this converter merits more and more switching frequency, power density, and efficiency. Therefore, the present paper focused on GaN-based LLC resonant converters. The converter structure, operation regions, design steps, and drive system are described precisely. Then its losses are discussed, and the magnets and inductance characteristics are investigated. After that, various interleaved topologies, as a solution to improve power density and decrease current ripples, have been discussed. Also, some challenges and concerns related to GaN-based LLC converters have been reviewed. Commercially available power transistors based on various technologies, i.e., GaN HEMT, Silicon (Si) MOSFET, and Silicon Carbide (SiC) have been compared. Finally, the LLC resonant converter has been simulated by taking advantage of LTspice and GaN HEMT merits, as compared with Si MOSFETs.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5915
Author(s):  
Manuel Escudero ◽  
Matteo-Alessandro Kutschak ◽  
Francesco Pulsinelli ◽  
Noel Rodriguez ◽  
Diego Pedro Morales

The switching loss of the secondary side rectifiers in LLC resonant converters can have a noticeable impact on the overall efficiency of the complete power supply and constrain the upper limit of the optimum switching frequencies of the converter. Two are the main contributions to the switching loss in the secondary side rectifiers: on the one hand, the reverse recovery loss (Qrr), most noticeably while operating above the series resonant frequency; and on the other hand, the output capacitance (Coss) hysteresis loss, not previously reported elsewhere, but present in all the operating modes of the converter (under and above the series resonant frequency). In this paper, a new technique is proposed for the measurement of the switching losses in the rectifiers of the LLC and other isolated converters. Moreover, two new circuits are introduced for the isolation and measurement of the Coss hysteresis loss, which can be applied to both high-voltage and low-voltage semiconductor devices. Finally, the analysis is experimentally demonstrated, characterizing the switching loss of the rectifiers in a 3 kW LLC converter (410 V input to 50 V output). Furthermore, the Coss hysteresis loss of several high-voltage and low-voltage devices is experimentally verified in the newly proposed measurement circuits.


Sign in / Sign up

Export Citation Format

Share Document