load range
Recently Published Documents


TOTAL DOCUMENTS

681
(FIVE YEARS 200)

H-INDEX

30
(FIVE YEARS 5)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122366
Author(s):  
Pengwei Zhang ◽  
Guangfu Xu ◽  
Yaopeng Li ◽  
Yikang Cai ◽  
Huiquan Duan ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Yasir Rafique ◽  
Abid Hussain

The energy efficiency of a power plant is largely determined by the vibrations of bearings that hold the shaft rotating at high speed which need to be critically controlled. This study presents the relative vibration modeling of a shaft bearing that is installed in a 660 MW supercritical steam turbine system. The operational data in raw form after being cleaned using machine learning based visualization and extensive data processing helped in training and validation of SVM and ANN models which are then compared by external validation tests. The model with best results is then used for the simulations of constructed operating scenarios. The ANN has been further tested for the complete operational load range (353 MW to 662 MW) which predicted the reduction in relative vibrations. Moreover, the validated ANN model has been used to develop many strategies of vibration reduction which helped in achieving more than 4% reduction in relative vibrations. Subsequently, an operational strategy that predicts a significant reduction in the bearing vibration levels is selected. For confirmation of the accuracy of prediction by ANN process model, the selected strategy has been used with the actual power plant. This assures the significant reduction of bearing vibration less than the alarm limit.


Author(s):  
K Siimut ◽  
MFR Zwicker ◽  
CV Nielsen

Plug failures have been observed in three-sheet spot welds, where the weld nugget did not penetrate into the outer sheet. Such solid-state bonds were found to be formed as a result of high contact pressure and temperature during welding. The strength of single spot welds was studied in a three-sheet combination (0.61 mm DX54 on two 1.21 mm DP600) with nugget penetrations into the thin sheet below 40%. The static strength was evaluated by tensile shear, cross tension and mechanized peel testing, and fatigue tests were carried out in tensile shear configuration at 30 Hz and mean load of 2 kN. It was found that loading of the specimens in tensile shear, mechanized peel and cross tension tests leads to a plug failure and a ductile fracture of the thin sheet. The weld strength is not correlated with the nugget penetration into the thin sheet but is determined by the area of the bonded interface, instead, as shown by peel and cross tension tests. Fatigue tests revealed that the specimens break by a plug failure. The failure mechanism was found to be ductile for the highest load range after approximately 33 000 cycles. At lower load ranges, evidence of a crack was found in the DX54 sheet, leading to higher stress concentration and subsequent ductile fracture. It was estimated that a load range of 940 N leads to failure after approximately 106 cycles.


Author(s):  
Jie Wang ◽  
Wei Jiang

The investigation of fatigue crack growth (FCG) behavior may contribute to the assessment of damage tolerance of components. To study the FCG behavior considering the elastic–plastic behavior at the crack tip, a numerical simulation scheme based on compact tension (CT) specimen is developed. Also, an effective plastically dissipated energy (PDE) factor composed of maximum PDE ([Formula: see text]) and PDE range ([Formula: see text]) is proposed to establish the expression for evaluating the FCG rate. The simulation results show good agreement with the results of test under same load conditions. Also, the mesh sensitivity analysis and the comparison with test results confirm the validation of proposed model. Based on the proposed numerical simulation scheme, the FCG behavior is studied by analyzing the influence of plastic wake, mean load, load range, overload, underload, load sequence, and cyclic compression load on FCG from the perspective of crack driving force, FCG rate, and crack opening displacement (COD). It is found from the analysis results that the developed numerical simulation scheme can consider the load history effect and crack closure effect. The mechanisms of these factors on the influence of FCG rate are analyzed in detail.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lukasz Madej ◽  
Adam Legwand ◽  
Mohan Setty ◽  
Mateusz Mojzeszko ◽  
Konrad Perzyński ◽  
...  

AbstractHerein, we evaluate the nanoindentation test capabilities in the determination of flow stress characteristics of the matrix material in porous sinters. The Distaloy AB sample with 15% porosity after the sintering operation is selected as a case study for the investigation. 2D and 3D imaging techniques are employed first to highlight difficulties in identifying reliable nano hardness measurement zones for further properties evaluation. Then, nanoindentation test results are acquired with Berkovich tip pressed under various loads at different locations in the sample. Systematic indentations in the quartz sample are used as a cleaning procedure to minimize the effect of the possible build-up around the indenter tip. The representative indentation load range is selected based on the extracted material characteristics. With that, the stress–strain response of the sinter matrix material is identified. The reliability of the determined flow stress curve is confirmed with the use of conical nanoindentation measurement results and finite element simulations. Obtained results show that it is possible to calculate reliable flow stress characteristics of the matrix in the porous samples, with the assumption that experiments under various loading conditions and from various locations in the matrix are performed. It is also pointed out that various indentation loads should be used to eliminate the influence of the pile-up or scale effects that affect the overall material response.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8010
Author(s):  
Peerawut Yutthagowith ◽  
Phattarin Kitcharoen ◽  
Anantawat Kunakorn

The well-known circuit for the generation of lightning impulse voltage (LIV) on low-inductance loads was introduced by Glaninger in 1975, and the circuit component selection was proposed by Feser. However, the circuit and the approach for the component selection have some difficulties for which further adjustment is required for obtaining the waveform parameters according to the standard requirement. In this paper, an extended Glaninger’s circuit with an additional series resistor is proposed. Furthermore, a systematic design and circuit analysis of LIV generation for low-inductance loads are developed. With the help of a circuit simulator, the circuit analysis for the component selection is described. The validity of the proposed circuit was confirmed by some experimental results in comparison with the simulated ones. The proposed circuit and component selection provide not only the generation waveform according to the standard requirement but also other promising performances in terms of the wide inductance load range from 400 μH to 4 mH, a voltage efficiency of over 80%, an overshoot voltage of below 5%, an undershoot voltage of below 40%, and a maximum charging capacitance of 10 μF. From the simulated and experimental results, the proposed circuit and component selection approach is very useful for the LIV tests on low-inductance loads instead of using the conventional approach based on trial and error.


2021 ◽  
Vol 87 (11) ◽  
pp. 64-69
Author(s):  
G. V. Shcherbak ◽  
A. A. Murashov ◽  
K. E. Smetanina ◽  
M. M. Vostokov ◽  
M. S. Boldin

The anisotropy of the properties of a ceramic cutting insert (for three faces) obtained by the lithography-based technology from the Al2O3 + ZrO2 composite has been studied. The study was carried out using the indentation method and Mayer’s law. This method, in contrast to the bending test, excludes the sample destruction. All the studies were carried out on three faces of a ceramic cutting insert made of a composite Al2O3 + ZrO2. The behavior of the Mayer index was studied in the range of loads from 2 to 20 kg and from 0.2 to 1 kg. The results of studying the density, phase composition and microstructure of each face of the sample are presented. The study of the adhesion of the printed layers were also carried out using a Knoop indenter. No anisotropy of the hardness was observed in the load range up to 10 kg. It is shown that a layered structure present in the sample, contributes to the hardness anisotropy under the load of 20 kg and more. No anisotropy of the fracture toughness is observed in the load range of 2 – 20 kg. The results of using a Knoop indenter revealed a high adhesion between 3D printed layers. Studies using a Knoop indenter have indicated high adhesion between the layers of 3D printing.


Sign in / Sign up

Export Citation Format

Share Document