Comparison of time complexity in median filtering on multi-core architecture

Author(s):  
B. S. Sharmila ◽  
Narasimha Kaulgud
Author(s):  
Amit Khan ◽  
Dipankar Majumdar

In the last few decades huge amounts and diversified work has been witnessed in the domain of de-noising of binary images through the evolution of the classical techniques. These principally include analytical techniques and approaches. Although the scheme was working well, the principal drawback of these classical and analytical techniques are that the information regarding the noise characteristics is essential beforehand. In addition to that, time complexity of analytical works amounts to beyond practical applicability. Consequently, most of the recent works are based on heuristic-based techniques conceding to approximate solutions rather than the best ones. In this chapter, the authors propose a solution using an iterative neural network that applies iterative spatial filtering technology with critically varied size of the computation window. With critical variation of the window size, the authors are able to show noted acceleration in the filtering approach (i.e., obtaining better quality filtration with lesser number of iterations).


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


2008 ◽  
Vol 28 (7) ◽  
pp. 1732-1734 ◽  
Author(s):  
Bao-guo WEI
Keyword(s):  

2013 ◽  
Vol 32 (3) ◽  
pp. 736-738
Author(s):  
Shu-juan LIU ◽  
Ye ZHAO ◽  
Rui DONG ◽  
Zhi-wei WANG ◽  
Fang-fang YANG

Sign in / Sign up

Export Citation Format

Share Document