Performance analysis of Extended Weighted Cumulative Expected Transmission Time (xWCETT) routing protocol in cognitive radio wireless mesh networks

Author(s):  
Lesiba Morries Kola ◽  
Mthulisi Velempini
2013 ◽  
Vol 80 (12) ◽  
pp. 27-31
Author(s):  
Pavan KumarT ◽  
Ramesh Babu B ◽  
Rajasekhar Rao K ◽  
Dinesh Gopalni

2014 ◽  
Vol 102 (8) ◽  
pp. 29-34
Author(s):  
S SivaNageswaraRao ◽  
Y.K.Sundara Krishna ◽  
K.Nageswara Rao

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
L. M. Kola ◽  
M. Velempini

The Wireless Mesh Networks (WMNs) technology has recently emerged as a promising high-speed wireless technology, which provides the last mile broadband Internet access and delivers integrated wireless communication solutions. Integrating the traditional wireless with new wireless technologies such as cognitive radio (CR) technology creates a platform for high-speed broadband communication. In a multihop ad hoc cognitive radio network (CRN) environment, the performance of the network is degraded by the routing protocols, which are adapted from the traditional wireless networks. In an endeavor to optimize the performance of the CRNs, existing routing protocols can be adapted and optimized. Secondly, new dynamic routing protocols can be designed to meet the requirements of CRNs. This paper investigates the existing routing protocols in WMNs and proposes a new routing protocol called extended Weighted Cumulative Expected Transmission Time (xWCETT). The xWCETT routing protocol was evaluated through network simulations using the NS 2. Its performance was evaluated with respect to the end-to-end average latency, the throughput, jitter, packet delivery ratio, and the normalized routing load. The comparative evaluation results show that the xWCETT achieves superior results in terms of average throughput, latency, and the normalized routing load.


Sign in / Sign up

Export Citation Format

Share Document