scholarly journals Design and Evaluation of Haptic Interface Wiggling Method for Remote Commanding of Variable Stiffness Profiles

Author(s):  
Jasper Schol ◽  
Jelle Hofland ◽  
Cock J.M. Heemskerk ◽  
David A. Abbink ◽  
Luka Peternel
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 63045-63057 ◽  
Author(s):  
Mohammad I. Awad ◽  
Dongming Gan ◽  
Irfan Hussain ◽  
Ali Az-Zu'bi ◽  
Cesare Stefanini ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad I. Awad ◽  
Irfan Hussain ◽  
Dongming Gan ◽  
Ali Az-zu'bi ◽  
Cesare Stefanini ◽  
...  

In this paper, the modeling, design, and characterization of the passive discrete variable stiffness joint (pDVSJ-II) are presented. The pDVSJ-II is an extended proof of concept of a passive revolute joint with discretely controlled variable stiffness. The key motivation behind this design is the need for instantaneous switching between stiffness levels when applied for remote exploration applications where stiffness mapping is required, in addition for the need of low-energy consumption. The novelty of this work lies in the topology used to alter the stiffness of the variable stiffness joint. Altering the stiffness is achieved by selecting the effective length of an elastic cord with hook's springs. This is realized through the novel design of the cord grounding unit (CGU), which is responsible for creating a new grounding point, thus changing the effective length and the involved springs. The main features of CGU are the fast response and the low-energy consumption. Two different levels of stiffness (low, high) can be discretely selected besides the zero stiffness. The proposed physical-based model matched the experimental results of the pDVSJ-II in terms of discrete stiffness variation curves, and the stiffness dependency on the behavior of the springs. Two psychophysiological tests were conducted to validate the capabilities to simulate different levels of stiffness on human user and the results showed high relative accuracy. Furthermore, a qualitative experiment in a teleoperation scenario is presented as a case study to demonstrate the effectiveness of the proposed haptic interface.


Author(s):  
Jeffrey C. Hawks ◽  
Mark B. Colton ◽  
Larry L. Howell

In this research a variable-stiffness compliant mechanism was developed to generate variable force-displacement profiles at the mechanism’s coupler point. The mechanism is based on a compliant Robert’s straight-line mechanism, and the stiffness is varied by changing the effective length of the compliant links with an actuated slider. The force-deflection behavior of the mechanism was analyzed using the Pseudo-Rigid Body Model (PRBM), and two key parameters, KΘ and γ, were optimized using finite element analysis (FEA) to match the model with the measured behavior of the mechanism. The variable-stiffness mechanism was used in a one-degree-of-freedom haptic interface (force-feedback device) to demonstrate the effectiveness of varying the stiffness of a compliant mechanism. Unlike traditional haptic interfaces, in which the force is controlled using motors and rigid links, the haptic interface developed in this work displays haptic stiffness via the variable-stiffness compliant mechanism. One of the key features of the mechanism is that the inherent return-to-zero behavior of the compliant mechanism was used to provide the stiffness feedback felt by the user. A prototype haptic interface was developed capable of simulating the force-displacement profile of Lachman’s Test performed on an injured ACL knee. The compliant haptic interface was capable of displaying stiffnesses between 4200 N/m and 7200 N/m.


2019 ◽  
Author(s):  
Mazen Albazzan ◽  
Brian Tatting ◽  
Ramy Harik ◽  
Zafer Gürdal ◽  
Adriana Blom-Schieber ◽  
...  

2014 ◽  
Vol 134 (10) ◽  
pp. 913-920 ◽  
Author(s):  
Takahiro Endo ◽  
Yuta Kazama ◽  
Haruhisa Kawasaki
Keyword(s):  

1997 ◽  
Author(s):  
Sridhar Kota ◽  
Joel Hetrick ◽  
Laxman Saggere
Keyword(s):  

Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


Sign in / Sign up

Export Citation Format

Share Document