scholarly journals IQC-based robust stability analysis for LPV control of doubly-fed induction generators

Author(s):  
H. Nguyen Tien ◽  
C. W. Scherer ◽  
J. M. A. Scherpen
Author(s):  
Denis Juma ◽  
Bessie Monchusi ◽  
Josiah Munda ◽  
Adisa Jimoh

This paper investigates the impacts of a wind farm connected at Harterbeespoort substation in South Africa on voltage stability of the power network. The site wind speed was determined and analyzed for viability. A comparison is made between the use of Doubly-Fed Induction Generators and Self-excited Induction Generators driven by the wind turbines. The resulting P-V and Q-V curves from load flow studies are presented and analyzed. The models for this study were implemented in DigSILENT PowerFactory.


Author(s):  
Denis Juma ◽  
Bessie Monchusi ◽  
Josiah Munda ◽  
Adisa Jimoh

This paper investigates the impacts of a wind farm connected at Harterbeespoort substation in South Africa on voltage stability of the power network. The site wind speed was determined and analyzed for viability. A comparison is made between the use of Doubly-Fed Induction Generators and Self-excited Induction Generators driven by the wind turbines. The resulting P-V and Q-V curves from load flow studies are presented and analyzed. The models for this study were implemented in DigSILENT PowerFactory.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4461
Author(s):  
Ahsanullah Memon ◽  
Mohd Wazir Mustafa ◽  
Muhammad Naveed Aman ◽  
Mukhtar Ullah ◽  
Tariq Kamal ◽  
...  

Brushless doubly-fed induction generators have higher reliability, making them an attractive choice for not only offshore applications but also for remote locations. These machines are composed of two back-to-back voltage source converters: the grid side converter and the rotor side converter. The rotor side converter is typically used for reactive current control of the power winding using the control winding current. A low voltage ride through (LVRT) fault is detected using a hysterisis comparison of the power winding voltage. This approach leads to two problems, firstly, the use of only voltage to detect faults results in erroneous or slow response, and secondly, sub-optimal control of voltage drop because of static reference values for reactive current compensation. This paper solves these problems by using an analytical model of the voltage drop caused by a short circuit. Moreover, using a fuzzy logic controller, the proposed technique employs the voltage frequency in addition to the power winding voltage magnitude to detect LVRT conditions. The analytical model helps in reducing the power winding voltage drop while the fuzzy logic controller leads to better and faster detection of faults, leading to an overall faster response of the system. Simulations in Matlab/Simulink show that the proposed technique can reduce the voltage drop by up to 0.12 p.u. and result in significantly lower transients in the power winding voltage as compared to existing techniques.


Sign in / Sign up

Export Citation Format

Share Document