Disturbance Observer-based Attitude Control of The Air-Bearing Platform using a Reaction Wheel

Author(s):  
Harry Septanto ◽  
Farohaji Kurniawan ◽  
Bambang Setiadi ◽  
Edi Kurniawan ◽  
Djoko Suprijanto
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jianzhong Qiao ◽  
Lei Guo

The antidisturbance fault tolerant control problem of attitude control systems for microsatellite is investigated in the presence of unknown input delay, stuck faults from the reaction wheel and the multiple disturbances. The multiple disturbances are supposed to include the vibration disturbance torque from the reaction wheel and modeling uncertainties. The fault diagnosis observer and disturbance observer are constructed to estimate stuck faults and vibration disturbance torque from the reaction wheel, respectively. A composite fault tolerant controller is designed by combining a PID controller, the fault accommodation estimation based on the fault diagnosis observer, and the disturbance compensator based on the disturbance observer. The controller and observer gains can be easily obtained via a set of linear matrix inequalities. Simulation results are given to show that the faults can be accommodated readily, and the disturbances can be rejected and attenuated simultaneously.


2014 ◽  
Vol 706 ◽  
pp. 170-180 ◽  
Author(s):  
Valdemir Carrara ◽  
Helio Koiti Kuga

This paper presents some approaches to the design and some experimental results for current and speed control loops of a reaction wheel (RW). Reaction wheels are largely employed in satellite attitude control due to its large range of torque capability, small power consumption and high reliability. However, to achieve such performance the RW design shall deal with several restrictions, such as to support the space environment hazards (radiation, vacuum, high and fast temperature variation), and launch requirements (vibration, noise and choke). In this work some experimental results of an air-bearing table attitude control equipped with a Fiber Optics Gyro (FOG), a reaction wheel and a small fan will be presented. The RW is controlled by speed reference, and a second speed mode control similar to the first one was implemented in an external computer. Both were then compared by means of the air-bearing attitude control performance during the wheel zero-speed crossing. The results showed that the controllers have similar performance, as expected, and the maximum attitude pointing error remained below 0.08 degrees, which complies with the attitude requirements of Earth pointing satellites.


1959 ◽  
Vol 4 (3) ◽  
pp. 139-149 ◽  
Author(s):  
R. Froelich ◽  
H. Papapoff

2018 ◽  
Vol 25 (5) ◽  
pp. 1008-1018 ◽  
Author(s):  
Ruidong Yan ◽  
Zhong Wu

There exist complex disturbances in the attitude control system of flexible spacecrafts, such as space environmental disturbances, flexible vibrations, inertia uncertainties, payload motions, etc. To suppress the effects of these disturbances on the performance of attitude stabilization, a super-twisting disturbance observer (STDO)-based nonsingular terminal sliding mode controller (NTSMC) is proposed in this paper. First, STDO is designed for a second-order dynamical system constructed by applying the lumped disturbance and its integral as state variables, and applying the integral as virtual measurement. Since the virtual measurement is obtained by integrating the inverse attitude dynamics, STDO not only avoids the differential operation of angular velocity, but also fully utilizes the information of a nonlinear model. By combining STDO with NTSMC, a composite controller is designed to achieve high-accuracy spacecraft attitude stabilization. Since most of the disturbances are compensated for by a STDO-based feedforward compensator, only a small switching gain is required to deal with the residual disturbances and uncertainties. Thus, the chattering phenomenon of the controller can be alleviated to a great extent. Finally, numerical simulations for the comparison between STDO-based NTSMC and nonlinear disturbance observer-based NTSMC are carried out in the presence of complex disturbances to verify the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document