Haptic Feedback Based Laparoscope Movement Perception Method for Autonomous Surgical Instruments Tracking in Robot-Assisted Minimally Invasive Surgery

Author(s):  
Jin Fang ◽  
Xiaojian Li ◽  
Ling Li ◽  
Jinyu Feng ◽  
Youtong Tantai
2010 ◽  
Vol 19 (5) ◽  
pp. 400-414 ◽  
Author(s):  
Andreas Tobergte

This paper presents MiroSurge, a telepresence system for minimally invasive surgery developed at the German Aerospace Center (DLR), and introduces MiroSurge's new user interaction modalities: (1) haptic feedback with software-based preservation of the fulcrum point, (2) an ultrasound-based approach to the quasi-tactile detection of pulsating vessels, and (3) a contact-free interface between surgeon and telesurgery system, where stereo vision is augmented with force vectors at the tool tip. All interaction modalities aim to increase the user's perception beyond stereo imaging by either augmenting the images or by using haptic interfaces. MiroSurge currently provides surgeons with two different interfaces. The first option, bimanual haptic interaction with force and partial tactile feedback, allows for direct perception of the remote environment. Alternatively, users can choose to control the surgical instruments by optically tracked forceps held in their hands. Force feedback is then provided in augmented stereo images by constantly updated force vectors displayed at the centers of the teleoperated instruments, regardless of the instruments' position within the video image. To determine the centerpoints of the instruments, artificial markers are attached and optically tracked. A new approach to detecting pulsating vessels beneath covering tissue with an omnidirectional ultrasound Doppler sensor is presented. The measurement results are computed and can be provided acoustically (by displaying the typical Doppler sound), optically (by augmenting the endoscopic video stream), or kinesthetically (by a gentle twitching of the haptic input devices). The control structure preserves the fulcrum point in minimally invasive surgery and user commands are followed by the surgical instrument. Haptic feedback allows the user to distinguish between interaction with soft and hard environments. The paper includes technical evaluations of the features presented, as well as an overview of the system integration of MiroSurge.


Author(s):  
Hang Su ◽  
Andrea Mariani ◽  
Salih Ertug Ovur ◽  
Arianna Menciassi ◽  
Giancarlo Ferrigno ◽  
...  

Author(s):  
Wen Qi ◽  
Hang Su ◽  
Ke Fan ◽  
Ziyang Chen ◽  
Jiehao Li ◽  
...  

The generous application of robot-assisted minimally invasive surgery (RAMIS) promotes human-machine interaction (HMI). Identifying various behaviors of doctors can enhance the RAMIS procedure for the redundant robot. It bridges intelligent robot control and activity recognition strategies in the operating room, including hand gestures and human activities. In this paper, to enhance identification in a dynamic situation, we propose a multimodal data fusion framework to provide multiple information for accuracy enhancement. Firstly, a multi-sensors based hardware structure is designed to capture varied data from various devices, including depth camera and smartphone. Furthermore, in different surgical tasks, the robot control mechanism can shift automatically. The experimental results evaluate the efficiency of developing the multimodal framework for RAMIS by comparing it with a single sensor system. Implementing the KUKA LWR4+ in a surgical robot environment indicates that the surgical robot systems can work with medical staff in the future.


Sign in / Sign up

Export Citation Format

Share Document