electrical bioimpedance
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 90)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
pp. 57-76
Author(s):  
Jenner Rodrigo Cubides-Amézquita ◽  
Esteban Aedo-Muñoz ◽  
Juan Camilo Mesa ◽  
Iván Darío Chavarro-Castañeda

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2354
Author(s):  
Tong In Oh ◽  
Min Ji Kang ◽  
You Jeong Jung ◽  
Tingting Zhang ◽  
Seung Geun Yeo ◽  
...  

The successful management of cervical intraepithelial neoplasia (CIN) with proper screening and treatment methods could prevent cervical cancer progression. We propose a bioimpedance spectroscopic measurement device and a multi-electrode probe as an independent screening tool for CIN. To evaluate the performance of this screening method, we enrolled 123 patients, including 69 patients with suspected CIN and 54 control patients without cervical dysplasia who underwent a hysterectomy for benign disease (non-CIN). Following conization, the electrical properties of the excised cervical tissue were characterized using an electrical bioimpedance spectroscopy-based multi-electrode probe. Twenty-eight multifrequency voltages were collected through the two concentric array electrodes via a sensitivity-optimized measurement protocol based on an electrical energy concentration method. The electrical properties of the CIN and non-CIN groups were compared with the results of the pathology reports. Reconstructed resistivity tended to decrease in the CIN and non-CIN groups as frequency increased. Reconstructed resistivity from 625 Hz to 50 kHz differed significantly between the CIN and non-CIN groups (p < 0.001). Using 100 kHz as the reference, the difference between the CIN and non-CIN groups was significant. Based on the difference in reconstructed resistivity between 100 kHz and the other frequencies, this method had a sensitivity of 94.3%, a specificity of 84%, and an accuracy of 90% in CIN screening. The feasibility of noninvasive CIN screening was confirmed through the difference in the frequency spectra evaluated in the excised tissue using the electrical bioimpedance spectroscopy-based multi-electrode screening probe.


2021 ◽  
Author(s):  
Les Bogdanowicz ◽  
Onur Fidaner ◽  
Donato Ceres ◽  
Alex Grycuk ◽  
David Demos

UNSTRUCTURED Lung cancer is the world’s leading cause of cancer deaths, and diagnosis remains challenging. Lung cancer starts as small nodules; early and accurate diagnosis allows timely surgical resection of malignant nodules while avoiding unnecessary surgery in patients with benign nodules. The Cole Relaxation Frequency (CRF) is a derived electrical bioimpedance signature, which may be utilized to distinguish cancerous tissues from normal tissues. Here we show that CRF allows for diagnosis of cancer in human subjects, based on evaluation of 60 specimens obtained from 30 patients. We observed clear discrimination of CRF values in tumor and distant normal tissues, resulting in a high degree of sensitivity (97%) and specificity (87%) in cancer diagnosis. Furthermore, we tested 20 xenograft small animal model specimens, observing a similar separation of CRF values as in the human in-vivo measurements. We also obtained CRF measurements in pressurized and unpressurized lungs by implanting tumors into ex-vivo porcine lungs. CRF measurements align with previous tests in human and small animal models.


Author(s):  
Zhuo-Qi Cheng ◽  
Jiale He ◽  
Liang Zhou ◽  
Yu Li ◽  
Pengjie Lin ◽  
...  

With the evolving demands of surgical intervention, there is a strong need for smaller and functionally augmented instruments to improve surgical outcomes, operational convenience, and diagnostic safety. Owing to the narrow and complicated anatomy, the probe head of the medical instrument is required to possess both good maneuverability and compact size. In addition, the development of medical instrument is moving toward patient-specialized, of which the articulation positions can be customized to reach the target position. To fulfill these requirements, this study presents the design of a smart handheld device which equips with a low cost, easy control, disposable flexible wrist, and an electrical bioimpedance sensor for medical diagnosis. Prototype of the device is made and tested. The experimental results demonstrate that the proposed device can provide accurate manipulation and effective tissue detection, showing a great potential in various medical applications.


2021 ◽  
Author(s):  
Israel Corbacho ◽  
Juan M. Carrillo ◽  
Jose L. Ausin ◽  
Miguel A. Dominguez ◽  
J. Francisco Duque-Carrillo

2021 ◽  
Author(s):  
Martin Puertas ◽  
Luis Gimenez ◽  
Ana Perez ◽  
Santiago F. Scagliusi ◽  
Pablo Perez ◽  
...  

2021 ◽  
Author(s):  
Les Bogdanowicz ◽  
Onur Fidaner ◽  
Donato Ceres ◽  
Alex Grycuk ◽  
Davis Demos

Abstract Lung cancer is the world’s leading cause of cancer deaths, and diagnosis remains challenging. Lung cancer starts as small nodules; early and accurate diagnosis allows timely surgical resection of malignant nodules while avoiding unnecessary surgery in patients with benign nodules. The Cole Relaxation Frequency (CRF) is a derived electrical bioimpedance signature, which may be utilized to distinguish cancerous tissues from normal tissues. Here we show that CRF allows for diagnosis of cancer in human subjects, based on evaluation of 60 specimens obtained from 30 patients. We observed clear discrimination of CRF values in tumor and distant normal tissues, resulting in a high degree of sensitivity (97%) and specificity (87%) in cancer diagnosis. Furthermore, we tested 20 xenograft small animal model specimens, observing a similar separation of CRF values as in the human in-vivo measurements. We also obtained CRF measurements in pressurized and unpressurized lungs by implanting tumors into ex-vivo porcine lungs. CRF measurements align with previous tests in human and small animal models.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Javier Ferney Castillo García ◽  
Jesús Hamilton Ortiz ◽  
Osamah Ibrahim Khalaf ◽  
Adrián David Valencia Hernández ◽  
Luis Carlos Rodríguez Timaná

The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance ( p  < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Román ◽  
Maria Poca ◽  
Gerard Amorós-Figueras ◽  
Javier Rosell-Ferrer ◽  
Cristina Gely ◽  
...  

AbstractThe phase angle is a versatile measurement to assess body composition, frailty and prognosis in patients with chronic diseases. In cirrhosis, patients often present alterations in body composition that are related to adverse outcomes. The phase angle could be useful to evaluate prognosis in these patients, but data are scarce. The aim was to analyse the prognostic value of the phase angle to predict clinically relevant events such as hospitalisation, falls, and mortality in patients with cirrhosis. Outpatients with cirrhosis were consecutively included and the phase angle was determined by electrical bioimpedance. Patients were prospectively followed to determine the incidence of hospitalisations, falls, and mortality. One hundred patients were included. Patients with phase angle ≤ 4.6° (n = 31) showed a higher probability of hospitalisation (35% vs 11%, p = 0.003), falls (41% vs 11%, p = 0.001) and mortality (26% vs 3%, p = 0.001) at 2-year follow-up than patients with PA > 4.6° (n = 69). In the multivariable analysis, the phase angle and MELD-Na were independent predictive factors of hospitalisation and mortality. Phase angle was the only predictive factor for falls. In conclusion, the phase angle showed to be a predictive marker for hospitalisation, falls, and mortality in outpatients with cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document