Prediction of long-range-dependent discrete-time fractional Brownian motion process

Author(s):  
Lei Yao ◽  
M. Doroslovacki
1974 ◽  
Vol 6 (4) ◽  
pp. 651-665 ◽  
Author(s):  
David C. Heath ◽  
William D. Sudderth

An abstract gambler's problem is formulated in a continuous-time setting and analogues are proved for some of the discrete-time results of Dubins and Savage in their book How to Gamble if You Must. Applications are made to problems of controlling a Brownian motion process.


1974 ◽  
Vol 6 (04) ◽  
pp. 651-665 ◽  
Author(s):  
David C. Heath ◽  
William D. Sudderth

An abstract gambler's problem is formulated in a continuous-time setting and analogues are proved for some of the discrete-time results of Dubins and Savage in their book How to Gamble if You Must. Applications are made to problems of controlling a Brownian motion process.


2021 ◽  
Vol 19 (3) ◽  
pp. 1333-1366
Author(s):  
Solesne Bourguin ◽  
Siragan Gailus ◽  
Konstantinos Spiliopoulos

1993 ◽  
Vol 30 (01) ◽  
pp. 17-27
Author(s):  
Aimé Lachal

Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa ), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab ), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process . Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb ).


2011 ◽  
Vol 48 (01) ◽  
pp. 145-153 ◽  
Author(s):  
Chihoon Lee

We consider a d-dimensional reflected fractional Brownian motion (RFBM) process on the positive orthant S = R + d , with drift r 0 ∈ R d and Hurst parameter H ∈ (½, 1). Under a natural stability condition on the drift vector r 0 and reflection directions, we establish a return time result for the RFBM process Z; that is, for some δ, κ > 0, sup x∈B E x [τ B (δ)] < ∞, where B = {x ∈ S : |x| ≤ κ} and τ B (δ) = inf{t ≥ δ : Z(t) ∈ B}. Similar results are known for reflected processes driven by standard Brownian motions, and our result can be viewed as their FBM counterpart. Our motivation for this study is that RFBM appears as a limiting workload process for fluid queueing network models fed by a large number of heavy-tailed ON/OFF sources in heavy traffic.


2000 ◽  
Vol 23 (11) ◽  
pp. 759-776 ◽  
Author(s):  
Seung Jun Chang ◽  
Soon Ja Kang ◽  
David Skoug

We use a generalized Brownian motion process to define a generalized Feynman integral and a conditional generalized Feynman integral. We then establish the existence of these integrals for various functionals. Finally we use the conditional generalized Feynman integral to derive a Schrödinger integral equation.


2006 ◽  
Vol 38 (02) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


Sign in / Sign up

Export Citation Format

Share Document