Non-Coherent DOA Estimation of Off-Grid Signals With Uniform Circular Arrays

Author(s):  
Zhengyu Wan ◽  
Wei Liu
2018 ◽  
Vol 232 ◽  
pp. 01012
Author(s):  
Bo Xu ◽  
Zhigang Huang

Direction-of-arrival (DOA) estimation is always a hotspot research in the fields of radar, sonar, communication and so on. And uniform circular arrays (UCAs) are more attractive in the context of DOA estimation since their symmetrical structures have potential to provide two directions coverage. This paper proposed a new DOA estimation method for UCAs via virtual subarray beamforming technique. The method would provide an acceptable DOA estimate even if the number of sources is great than the number of array elements. Also, the performance of the proposed method would hold good when the snapshot length or the signal-to-noise ratio (SNR) is small. Simulations show that the proposed technique offers significantly improved estimation resolution, capacity, and accuracy relative to the existing techniques.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 398
Author(s):  
S. Venkata Rama Rao ◽  
A. Mallikarjuna Prasad ◽  
Ch. Santhi Rani

In this paper, Root-MUSIC algorithm for direction of arrival (DOA) estimation of uncorrelated signals is explored both for uniform linear and uniform circular arrays. The basic problem in Uniform Linear Arrays (ULAs) is Mutual coupling between the individual elements of the antenna array. This problem is reduced in Uniform Circular Arrays (UCAs) because of its symmetric structure. The DOA estimation of uncorrelated signals that have different power levels is simulated on a MATLAB environment. And the noise consider is white across all the array elements. The factors considered for simulation are number of number of snapshots, array elements, radius of circular array, array length, and signal to noise ratio. 


Sign in / Sign up

Export Citation Format

Share Document