Performance Metrics Analysis of Adaptive threshold Empirical Mode Decomposition Denoising method for suppression of noise in Lung sounds

Author(s):  
B. Sangeetha ◽  
R. Periyasamy
2019 ◽  
Vol 26 (3-4) ◽  
pp. 229-240
Author(s):  
Jianwei Zhang ◽  
Ge Hou ◽  
Han Wang ◽  
Yu Zhao ◽  
Jinlin Huang

Operation feature extraction of flood discharge structures under ambient excitation has attracted increasing attention in recent years. However, the vibration signal of flood discharge structures is a nonstationary random signal with low signal-to-noise ratio, which is mixed with lots of low-frequency water flow noise and high-frequency white noise. It is difficult to excavate the hidden vibration characteristic information accurately. To solve the problem, we propose a novel denoising method called improved variational mode decomposition. As an improved method of variational mode decomposition, improved variational mode decomposition can effectively determine the decomposition mode number of variational mode decomposition by using the mutual information method. Furthermore, improved variational mode decomposition is combined with a variance dedication rate to extract the overall operation characteristic information of the structure. In order to evaluate the applicability and effectiveness of the proposed improved variational mode decomposition–variance dedication rate method, we compare the denoising results of simulation signals produced by an improved variational mode decomposition–variance dedication rate with those produced by digital filter, wavelet threshold, empirical mode decomposition, empirical wavelet transform, complete ensemble empirical mode decomposition with adaptive noise, and improved variational mode decomposition methods and find a better performance of the improved variational mode decomposition–variance dedication rate method. In addition, the proposed method is applied to the Three Gorges Dam, and the results show that the improved variational mode decomposition–variance dedication rate method can effectively remove heavy background noises and extract the operation characteristic information of the flood discharge structure, which contributes to health monitoring and damage identification of the flood discharge structure.


Author(s):  
Xueli An ◽  
Junjie Yang

A new vibration signal denoising method of hydropower unit based on noise-assisted multivariate empirical mode decomposition (NA-MEMD) and approximate entropy is proposed. Firstly, the NA-MEMD is used to decompose the signal into a number of intrinsic mode functions. Then, the approximate entropy of each component is computed. According to a preset threshold of approximate entropy, these components are reconstructed to denoise vibration signal of hydropower unit. The analysis results of simulation signal and real-world signal show that the proposed method is adaptive and has a good denoising performance. It is very suitable for online denoising of hydropower unit's vibration signal.


2020 ◽  
Vol 206 ◽  
pp. 03019
Author(s):  
Kun Zhao ◽  
Jisheng Ding ◽  
YanFei Sun ◽  
ZhiYuan Hu

In order to suppress the multiplicative specular noise in side-scan sonar images, a denoising method combining bidimensional empirical mode decomposition and non-local means algorithm is proposed. First, the sonar image is decomposed into intrinsic mode functions(IMF) and residual component, then the high frequency IMF is denoised by non-local mean filtering method, and finally the processed intrinsic mode functions and residual component are reconstructed to obtain the de-noised side-scan sonar image. The paper’s method is compared with the conventional filtering algorithm for experimental quantitative analysis. The results show that this method can suppress the sonar image noise and retain the detailed information of the image, which is beneficial to the later image processing.


2021 ◽  
Vol 11 (5) ◽  
pp. 7536-7541
Author(s):  
W. Mohguen ◽  
S. Bouguezel

In this paper, a novel electrocardiogram (ECG) denoising method based on the Ensemble Empirical Mode Decomposition (EEMD) is proposed by introducing a modified customized thresholding function. The basic principle of this method is to decompose the noisy ECG signal into a series of Intrinsic Mode Functions (IMFs) using the EEMD algorithm. Moreover, a modified customized thresholding function was adopted for reducing the noise from the ECG signal and preserve the QRS complexes. The denoised signal was reconstructed using all thresholded IMFs. Real ECG signals having different Additive White Gaussian Noise (AWGN) levels were employed from the MIT-BIH database to evaluate the performance of the proposed method. For this purpose, output SNR (SNRout), Mean Square Error (MSE), and Percentage Root mean square Difference (PRD) parameters were used at different input SNRs (SNRin). The simulation results showed that the proposed method provided significant improvements over existing denoising methods.


Sign in / Sign up

Export Citation Format

Share Document