scholarly journals Optimal low-complexity self-interference cancellation for full-duplex MIMO small cells

Author(s):  
Italo Atzeni ◽  
Marco Maso ◽  
Marios Kountouris
2021 ◽  
Vol 25 (1) ◽  
pp. 181-185
Author(s):  
Mohamed Elsayed ◽  
Ahmad A. Aziz El-Banna ◽  
Octavia A. Dobre ◽  
Wanyi Shiu ◽  
Peiwei Wang

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Author(s):  
Chao Chen ◽  
Zheng Meng ◽  
Seung Jun Baek ◽  
Xiaohan Yu ◽  
Chuanhuang Li ◽  
...  

Author(s):  
G. T. Watkins

Abstract Full duplex (FD) could potentially double wireless communications capacity by allowing simultaneous transmission and reception on the same frequency channel. A single antenna architecture is proposed here based on a modified rat-race coupler to couple the transmit and receive paths to the antenna while providing a degree of isolation. To allow the self-interference cancellation (SiC) to be maximized, the rat-race coupler was made tuneable. This compensated for both the limited isolation of the rat race and self-interference caused by antenna mismatch. Tuneable operation was achieved by removing the fourth port of the rat race and inserting a variable attenuator and variable phase shifter into the loop. In simulation with a 50 Ω load on the antenna port, better than −65 dB narrowband SiC was achieved over the whole 2.45 GHz industrial, scientific and medical (ISM) band. Inserting the S-parameters of a commercially available sleeve dipole antenna into the simulation, better than −57 dB narrowband SiC could be tuned over the whole band. Practically, better than −58 dB narrowband tuneable SiC was achieved with a practical antenna. When excited with a 20 MHz Wi-Fi signal, −42 dB average SiC could be achieved with the antenna.


2014 ◽  
Vol 3 (4) ◽  
pp. 405-408 ◽  
Author(s):  
Zhaojun He ◽  
Shihai Shao ◽  
Ying Shen ◽  
Chaojin Qing ◽  
Youxi Tang

Sign in / Sign up

Export Citation Format

Share Document