Decentralized search, tasking and tracking using multiple fixed-wing miniature UAVs

Author(s):  
Wei Meng ◽  
Zhirong He ◽  
Rodney Teo ◽  
Lihua Xie
Keyword(s):  
Author(s):  
Savvas Papaioannou ◽  
Panayiotis Kolios ◽  
Theocharis Theocharides ◽  
Christos G. Panayiotou ◽  
Marios M. Polycarpou

2009 ◽  
Vol 26 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Daze Wang ◽  
Quincy Chi Kwan Tse ◽  
Ying Zhou

2019 ◽  
Author(s):  
Raphael Scheible ◽  
Dennis Kadioglu ◽  
Stephan Ehl ◽  
Marco Blum ◽  
Martin Boeker ◽  
...  

BACKGROUND The German Network on Primary Immunodeficiency Diseases (PID-NET) utilizes the European Society for Immunodeficiencies (ESID) registry as a platform for collecting data. In the context of PID-NET data, we show how registries based on custom software can be made interoperable for better collaborative access to precollected data. The Open Source Registry System for Rare Diseases (<i>Open-Source-Registersystem für Seltene Erkrankungen</i> [OSSE], in German) provides patient organizations, physicians, scientists, and other parties with open source software for the creation of patient registries. In addition, the necessary interoperability between different registries based on the OSSE, as well as existing registries, is supported, which allows those registries to be confederated at both the national and international levels. OBJECTIVE Data from the PID-NET registry should be made available in an interoperable manner without losing data sovereignty by extending the existing custom software of the registry using the OSSE registry framework. METHODS This paper describes the following: (1) the installation and configuration of the OSSE bridgehead, (2) an approach using a free toolchain to set up the required interfaces to connect a registry with the OSSE bridgehead, and (3) the decentralized search, which allows the formulation of inquiries that are sent to a selected set of registries of interest. RESULTS PID-NET uses the established and highly customized ESID registry software. By setting up a so-called OSSE bridgehead, PID-NET data are made interoperable according to a federated approach, and centrally formulated inquiries for data can be received. As the first registry to use the OSSE bridgehead, the authors introduce an approach using a free toolchain to efficiently implement and maintain the required interfaces. Finally, to test and demonstrate the system, two inquiries are realized using the graphical query builder. By establishing and interconnecting an OSSE bridgehead with the underlying ESID registry, confederated queries for data can be received and, if desired, the inquirer can be contacted to further discuss any requirements for cooperation. CONCLUSIONS The OSSE offers an infrastructure that provides the possibility of more collaborative and transparent research. The decentralized search functionality includes registries into one search application while still maintaining data sovereignty. The OSSE bridgehead enables any registry software to be integrated into the OSSE network. The proposed toolchain to set up the required interfaces consists of freely available software components that are well documented. The use of the decentralized search is uncomplicated to use and offers a well-structured, yet still improvable, graphical user interface to formulate queries.


Author(s):  
Weimao Ke

Amid the rapid growth of information today is the increasing challenge for people to navigate its magnitude. Dynamics and heterogeneity of large information spaces such as the Web raise important questions about information retrieval in these environments. Collection of all information in advance and centralization of IR operations are extremely difficult, if not impossible, because systems are dynamic and information is distributed. The chapter discusses some of the key issues facing classic information retrieval models and presents a decentralized, organic view of information systems pertaining to search in large scale networks. It focuses on the impact of network structure on search performance and discusses a phenomenon we refer to as the Clustering Paradox, in which the topology of interconnected systems imposes a scalability limit.


2017 ◽  
Vol 74 (2) ◽  
pp. 738-767 ◽  
Author(s):  
Yung-Ting Chuang ◽  
Chung-Yen Yu ◽  
Qian-Wei Wu

Sign in / Sign up

Export Citation Format

Share Document