Inverse Optimality and Adaptive Asymptotic Tracking Control of Uncertain Euler-Lagrange Systems

Author(s):  
Haiwen Wu ◽  
Dabo Xu
Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 568 ◽  
Author(s):  
Anqing Yang ◽  
Linshan Li ◽  
Zuoxun Wang ◽  
Rongwei Guo

This paper investigates the asymptotic tracking control problem of the chaotic system. Firstly, a reference system is presented, the output of which can asymptotically track a given command. Then, a both physically implementable and simple controller is designed, by which the given chaotic system synchronizes the reference system, and thus the output of such chaotic systems can asymptotically track the given command. It should be pointed out that the output of the given chaotic system can asymptotically track arbitrary desired periodic orbits. Finally, several illustrative examples are taken as example to show the validity and effectiveness of the obtained results.


Author(s):  
Ben Niu ◽  
Georgi M. Dimirovski ◽  
Jun Zhao

In this paper, we address the tracking control problem for switched nonlinear systems in strict-feedback form with time-varying output constraints. To prevent the output from violating the time-varying constraints, we employ a Barrier Lyapunov Function, which relies explicitly on time. Based on the simultaneous domination assumption, we design a controller for the switched system, which guarantees that asymptotic tracking is achieved without transgression of the constraints and all closed-loop signals remain bounded under arbitrary switchings. The effectiveness of the proposed results is illustrated using a numerical example.


2010 ◽  
Vol 73 (7-9) ◽  
pp. 1293-1302 ◽  
Author(s):  
Lili Cui ◽  
Huaguang Zhang ◽  
Bing Chen ◽  
Qingling Zhang

Sign in / Sign up

Export Citation Format

Share Document