Kalman filtering-based modified Cam-Shift vehicle tracking algorithm for highway traffic conditions

Author(s):  
Dengfeng Li ◽  
Hu Li ◽  
Xiuling Wei
2015 ◽  
Vol 9 (4) ◽  
pp. 429-441 ◽  
Author(s):  
Peixun Liu ◽  
Wenhui Li ◽  
Ying Wang ◽  
Hongyin Ni

Author(s):  
Ioannis A. Ntousakis ◽  
Kallirroi Porfyri ◽  
Ioannis K. Nikolos ◽  
Markos Papageorgiou

Vehicle merging on highways has always been an important aspect, which directly affects the capacity of the highway. Under critical traffic conditions, the merging of main road traffic and on-ramp traffic is known to trigger speed breakdown and congestion. Additionally, merging is one of the most stressful tasks for the driver, since it requires a synchronized set of observations and actions. Consequently, drivers often perform merging maneuvers with low efficiency. Emerging vehicle technologies, such as cooperative adaptive cruise control and/or merging-assistance systems, are expected to enable the so-called “cooperative merging”. The purpose of this work is to propose a cooperative merging system and evaluate its performance and its impact on highway capacity. The modeling and simulation of the proposed methodology is performed within the framework of a microscopic traffic simulator. The proposed model allows for the vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication, which enables the effective handling of the available gaps between vehicles. Different cases are examined through simulations, in order to assess the impact of the system on traffic flow, under various traffic conditions. Useful conclusions are derived from the simulation results, which can form the basis for more complex merging algorithms and/or strategies that adapt to traffic conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
İlker Altay ◽  
Bilin Aksun Güvenç ◽  
Levent Güvenç

The DriveSafe project was carried out by a consortium of university research centers and automotive OEMs in Turkey to reduce accidents caused by driver behavior. A huge amount of driving data was collected from 108 drivers who drove the instrumented DriveSafe vehicle in the same route of 25 km of urban and highway traffic in Istanbul. One of the sensors used in the DriveSafe vehicle was a forward-looking LIDAR. The data from the LIDAR is used here to determine and record the headway time characteristics of different drivers. This paper concentrates on the analysis of LIDAR data from the DriveSafe vehicle. A simple algorithm that only looks at the forward direction along a straight line is used first. Headway times based on this simple approach are presented for an example driver. A more accurate detection and tracking algorithm taken from the literature are presented later in the paper. Grid-based and point distance-based methods are presented first. Then, a detection and tracking algorithm based on the Kalman filter is presented. The results are demonstrated using experimental data.


Sign in / Sign up

Export Citation Format

Share Document