Volume 12: Transportation Systems
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791849613

Author(s):  
Ioannis A. Ntousakis ◽  
Kallirroi Porfyri ◽  
Ioannis K. Nikolos ◽  
Markos Papageorgiou

Vehicle merging on highways has always been an important aspect, which directly affects the capacity of the highway. Under critical traffic conditions, the merging of main road traffic and on-ramp traffic is known to trigger speed breakdown and congestion. Additionally, merging is one of the most stressful tasks for the driver, since it requires a synchronized set of observations and actions. Consequently, drivers often perform merging maneuvers with low efficiency. Emerging vehicle technologies, such as cooperative adaptive cruise control and/or merging-assistance systems, are expected to enable the so-called “cooperative merging”. The purpose of this work is to propose a cooperative merging system and evaluate its performance and its impact on highway capacity. The modeling and simulation of the proposed methodology is performed within the framework of a microscopic traffic simulator. The proposed model allows for the vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication, which enables the effective handling of the available gaps between vehicles. Different cases are examined through simulations, in order to assess the impact of the system on traffic flow, under various traffic conditions. Useful conclusions are derived from the simulation results, which can form the basis for more complex merging algorithms and/or strategies that adapt to traffic conditions.


Author(s):  
Vladimir V. Vantsevich ◽  
Jesse R. Paldan ◽  
Jeremy P. Gray

In this paper, a technical concept is described for a power transmitting unit to control the split of power between the drive axles of a 4×4 hybrid-electric vehicle. This new power transmitting unit uses a planetary gear set and eddy current brake to provide a continuously variable gear ratio that can be integrated into the vehicle driveline between the transfer case and front axle. The paper details the electrical and mechanical characteristics of the device, including its operation mode, its mathematical model built from the equations of the planetary gear set and eddy current brake, the optimization equation by which the device will be controlled to improve vehicle slip efficiency, as well as its torque and electrical current usage. Computer simulations are performed on a mathematical model of a 4×4 military truck using the power transmitting unit in conjunction with a series hybrid-electric configuration transmission.


Author(s):  
Brijesh Kumar Pandey ◽  
Sujay Kumar Mukherjea

Steady Navier-Stokes (N-S) equations for two dimensional flow using standard k-ε turbulence modeling was solved with the help of FLUENT 14 software to simulate the flow around a train in an evacuated tunnel. Suction mechanism at the rear end was applied to study the additional reduction effect of the aerodynamic drag on the vehicle. It was observed that coefficient of drag was decreasing with the increase of suction speed. Similar investigations have also been performed by taking different shapes of the head and tail of the vehicle at the same blockage ratio under different pressures of evacuation. It was found that with the decrease of ambient pressure the aerodynamic drag reduced for any geometrical shape. Investigations have also been performed on the wake structure with respect to wake size.


Author(s):  
Juan C. Blanco ◽  
Luis E. Muñoz

The vehicle optimal design is a multi-objective multi-domain optimization problem. Each design aspect must be analyzed by taking into account the interactions present with other design aspects. Given the size and complexity of the problem, the application of global optimization methodologies is not suitable; hierarchical problem decomposition is beneficial for the problem analysis. This paper studies the handling dynamics optimization problem as a sub-problem of the vehicle optimal design. This sub-problem is an important part of the overall vehicle design decomposition. It is proposed that the embodiment design stage can be performed in an optimal viewpoint with the application of the analytical target cascading (ATC) optimization strategy. It is also proposed that the design variables should have sufficient physical significance, but also give the overall design enough design degrees of freedom. In this way, other optimization sub-problems can be managed with a reduced variable redundancy and sub-problem couplings. Given that the ATC strategy is an objective-driven methodology, it is proposed that the objectives of the handling dynamics, which is a sub-problem in the general ATC problem, can be defined from a Pareto optimal set at a higher optimization level. This optimal generation of objectives would lead to an optimal solution as seen at the upper-level hierarchy. The use of a lumped mass handling dynamics model is proposed in order to manage an efficient optimization process based in handling dynamics simulations. This model contains detailed information of the tire properties modeled by the Pacejka tire model, as well as linear characteristics of the suspension system. The performance of this model is verified with a complete multi-body simulation program such as ADAMS/car. The handling optimization problem is presented including the proposed design variables, the handling dynamics simulation model and a case study in which a double wishbone suspension system of an off-road vehicle is analyzed. In the case study, the handling optimization problem is solved by taking into account couplings with the suspension kinematics optimization problem. The solution of this coupled problem leads to the partial geometry definition of the suspension system mechanism.


Author(s):  
Jingwen Hu ◽  
H. R. Raj Jayakar

In this study, a finite element (FE) model of a child seat was developed. This model along with a HIII 6-year-old child ATD model was validated against four sled tests with different restraint conditions under FMVSS 213 test environments. The simulated results of ATD kinematics and restraint forces correlated well to the test data. In order to reduce the weight of the child seat while keeping its safety performance, different design concepts were explored by FE simulations with a mesh morphing method. It was found that lowering the height of child seat base can effectively reduce the weight and head/knee excursions in frontal crashes at the same time. Reducing the material in low stress areas would reduce the weight but slightly increase the ATD head and knee excursions in crashes. Overall, the modified design with reduced based height and reduced weight in low stress areas has a weight of 1.13 lbs less than the original seat, and the ATD head and knee excursions in FMVSS 213 test conditions with four different restraint conditions all reduced. In addition, it was found that changing the tube shape can potentially change the distribution of the head and knee excursions without much impact on weight. This study demonstrated the feasibility and usefulness for introducing FE simulations into the child seat design process. Future studies using this validated FE child seat model should focus on other crash scenarios, such as those with different impact severities and directions to improve safety performance of the child seat design.


Author(s):  
Shubhashisa Sahoo ◽  
Shankar C. Subramanian ◽  
Suresh Srivastava

Even if there are many software and mathematical models available in the literature to analyze the dynamic performance of Unmanned Ground Vehicles (UGVs), it is always difficult to identify or collect the required vehicle parameters from the vehicle manufacturer for simulation. In analyzing the vehicle handling performance, a difficult and complex task is to use an appropriate tire model that can accurately characterize the ground-wheel interaction. Though, the well-known ‘Magic Formula’ is widely used for this purpose, it requires expensive test equipment to estimate the Magic Formula coefficients. The design of longitudinal and lateral controllers plays a significant role in path tracking of an UGV. Though the speed of the vehicle may remain almost constant in most of the maneuvers such as lane change, Double Lane Change (DLC), step steer, cornering, etc., design of the lateral controller is always a challenging task as it depends on the vehicle parameters, road information and also on the steering actuator dynamics. Although a mathematical model is an abstraction of the actual system, the controller is designed based on this model and then deployed on the real system. In this paper, a realistic mathematical model of the vehicle considering the steering actuator dynamics has been developed by calculating the cornering stiffnesses from the basic tire information and the vertical load on each tire. A heading angle controller of the UGV has been considered using the Point-to-Point navigation algorithm. Then, these controllers have been implemented on a test platform equipped with an Inertial Measurement Unit (IMU) and a Global Positioning System (GPS). A wide range of experiments such as J-Turn, lane change and DLC have also been conducted for comparison with the simulation results. Sensitivity analysis has been carried out to check the robustness and stability of the controller by varying the cornering stiffness of tires, the most uncertain parameter. The longitudinal speed of the vehicle is assumed to vary between a minimum value of 1.4 m/s and a maximum value of 20 m/s. It has been found that when the vehicle is moving at a constant velocity of 3.2 m/s, a heading angle change of 20 degrees can be achieved within 3 seconds with 2% steady state error using a proportional controller. It was observed that at lower speeds, the controller is more sensitive to the steering actuator dynamics and at higher speeds, the controller is more sensitive to the cornering stiffness of tires.


Author(s):  
Mina Attari ◽  
Saeid Habibi

Car tracking algorithms are important for a number of applications, including self-driving cars and vehicle safety systems. The probabilistic data association (PDA) algorithm, in conjunction with Kalman Filter (KF), and interacting multiple model (IMM) are well studied, specifically in the aero-tracking applications. This paper studies single targets while performing maneuvers in the presence of clutter, which is a common scenario for road vehicle tracking applications. The relatively new smooth variable structure filter (SVSF) is demonstrated to be robust and stable filtering strategy under the presence of modeling uncertainties. In this paper, SVSF based PDA technique is combined with IMM method. The new method, referred to as IMM-PDA-SVSF is simulated under several possible car motion scenarios. Also, the algorithm is tested on a real experimental data acquired by GPS device.


Author(s):  
Joseph Montalvo ◽  
Alexis Trevino ◽  
Arturo A. Fuentes ◽  
Constantine M. Tarawneh

This paper presents a detailed study of the structural integrity of conventional and modified railroad bearing adapters for onboard monitoring applications. Freight railcars rely heavily on weigh bridges and stations to determine cargo load. As a consequence, most load measurements are limited to certain physical railroad locations. This limitation provided an opportunity for an optimized sensor that could potentially deliver significant insight on bearing condition monitoring as well as load information. Bearing adapter modifications (e.g. cut-outs) were necessary to house the sensor and, thus, it is imperative to determine the reliability of the modified railroad bearing adapter, which will be used for onboard health monitoring applications. To this end, this study quantifies the impact of the proposed modifications on the adapter structural integrity through a series of experiments and finite element analyses. The commercial software Algor 20.3TM is used to conduct the stress finite element analyses. Different loading scenarios are simulated with the purpose of obtaining the conventional and modified bearing adapter stresses during normal and abnormal operating conditions. This information is then used to estimate the lifetime of these bearing adapters. Furthermore, this paper presents an experimentally validated finite element model which can be used to attain stress distribution maps of these bearing adapters in different service conditions. The maps are also useful for identifying areas of interest for an eventual inspection of conventional or modified railroad bearing adapters in the field.


Author(s):  
Jennifer M. Bastiaan ◽  
Amir Khajepour

A physical testing program is performed in support of finite element model creation for a 50-series passenger car tire. ABAQUS finite element analysis software is used along with its standard material models. Uniaxial tension testing of tire samples cut from the tread composite, tread rubber and sidewall composite is performed in order to obtain material properties. Hyper-elastic material coefficients for tread rubber are fit using uniaxial tension test data. Results show that the Arruda-Boyce hyper-elastic material model fits the test data well and it predicts reasonable overall behavior in uniaxial tension and uniaxial compression. Most other hyperelastic material models are found to predict unrealistic behavior in uniaxial compression for the tire samples, especially in the 0 to 20% compressive strain range. Frequency response testing of two inflated passenger car tires of different sizes, makes and models is also performed to assist in defining the viscoelastic material model for tread rubber. Test results show that tire modal damping is in the 2 to 4% range for most modes below 200 Hz, and the response curves, modal density and modal damping are remarkably similar for the two tires tested. The tire finite element model with updated material properties is simulated for nine combinations of air inflation pressure and vertical load in order to calculate static loaded radius. The analysis results are compared with physical test results and the analysis results are found to deviate at most by 3% compared to the tests.


Author(s):  
Hagen Lind ◽  
Matthias Wangenheim

In the tire-road contact friction depends on several influencing variables (e.g. surface texture, real contact area, sliding velocity, normal contact pressure, temperature, tread block geometry, compound and on the existence of a lubrication film). A multi-scale model for prediction of contact area and frictional behaviour of rubber on rigid rough surfaces at different length scales is presented. Within this publication the multi-scale approach is checked regarding convergence. By means of the model influencing parameters like sliding velocity, compound and surface texture on friction and contact area will be investigated.


Sign in / Sign up

Export Citation Format

Share Document