Design of an LPWAN communication module based on secure element for smart parking application

Author(s):  
YongSung Jeon ◽  
Hong-Il Ju ◽  
Seungyong Yoon
Author(s):  
Zheng Xiao

Background: In order to study the interference of wired transmission mode on robot motion, a mobile robot attitude calculation and debugging system based on radio frequency (RF) technology is proposed. Methods: Microcontroller STM32 has been used as the control core for the attitude information of the robot by using MEMS gyroscope and accelerometer. The optimal attitude Angle of the robot is calculated through nRF24L01 which is the core of the wireless communication module, attitude acquisition module and wireless data communication upper computer application platform. Results: The results shows that the positioning accuracy is better than±5mm. Conclusion: The experimental results show that the proposed attitude solving and debugging system of mobile robot based on RF technology has better reliability and real-time performance. The propped model is convenient for debugging of mobile robot system and has certain engineering application value.


Author(s):  
Mohammed Rezwanul Islam ◽  
Sami Azam ◽  
Bharanidharan Shanmugam ◽  
Asif Karim ◽  
Jamal El-Den ◽  
...  

Author(s):  
Awad Alharbi ◽  
George Halikias ◽  
Mohammad Yamin ◽  
Adnan Ahmed Abi Sen

2021 ◽  
Vol 21 (3) ◽  
pp. 1-21
Author(s):  
Francesco Piccialli ◽  
Fabio Giampaolo ◽  
Edoardo Prezioso ◽  
Danilo Crisci ◽  
Salvatore Cuomo

Nowadays, a sustainable and smart city focuses on energy efficiency and the reduction of polluting emissions through smart mobility projects and initiatives to “sensitize” infrastructure. Smart parking is one of the building blocks of intelligent mobility, innovative mobility that aims to be flexible, integrated, and sustainable and consequently integrated into a Smart City. By using the Internet of Things (IoT) sensors located in the parking areas or the underground car parks in combination with a mobile application, which indicates to citizens the free places in the different areas of the city and guides them toward the chosen parking, it is possible to reduce air pollution and fluidifying noise traffic. In this article, we present and discuss an innovative Deep Learning-based ensemble technique in forecasting the parking space occupancy to reduce the search time for parking and to optimize the flow of cars in particularly congested areas, with an overall positive impact on traffic in urban centres. A genetic algorithm has also been used to optimize predictors parameters. The main goal is to design an intelligent IoT-based service that can predict, in the next few hours, the parking spaces occupancy of a street. The proposed approach has been assessed on a real IoT dataset composed by over than 15M of collected sensor records. Obtained results demonstrate that our method outperforms both single predictors and the widely used strategy of the mean providing inherently robust predictions.


Sign in / Sign up

Export Citation Format

Share Document