Fault Detection and Isolation Indices for Large-Scale Systems

Author(s):  
Lamiaa M. Elshenawy
2001 ◽  
Author(s):  
Thiagalingam Kirubarajan ◽  
Venkatesh N. Malepati ◽  
Somnath Deb ◽  
Jie Ying

2014 ◽  
Vol 62 (3) ◽  
pp. 571-582 ◽  
Author(s):  
J.M. Kościelny ◽  
M. Syfert

Abstract The survey presents a selection of the methods of the fault detection and isolation suitable to be useful for the diagnostics of the complex, large scale industrial processes. The paper focuses on these methods that have appropriately high level of potential applicability in industrial practice. The novelty of the paper relies on the discussion of the dependency of the level of knowledge about diagnosed process and recommended diagnostic approaches. Appropriate recommendations were given in the convenient form of the table


2019 ◽  
Vol 25 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Soumava Boral ◽  
Sanjay Kumar Chaturvedi ◽  
V.N.A. Naikan

Purpose Usually, the machinery in process plants is exposed to harsh and uncontrolled environmental conditions. Even after taking different types of preventive measures to detect and isolate the faults at the earliest possible opportunity becomes a complex decision-making process that often requires experts’ opinions and judicious decisions. The purpose of this paper is to propose a framework to detect, isolate and to suggest appropriate maintenance tasks for large-scale complex machinery (i.e. gearboxes of steel processing plant) in a simplified and structured manner by utilizing the prior fault histories available with the organization in conjunction with case-based reasoning (CBR) approach. It is also demonstrated that the proposed framework can easily be implemented by using today’s graphical user interface enabled tools such as Microsoft Visual Basic and similar. Design/methodology/approach CBR, an amalgamated domain of artificial intelligence and human cognitive process, has been applied to carry out the task of fault detection and isolation (FDI). Findings The equipment failure history and actions taken along with the pertinent health indicators are sufficient to detect and isolate the existing fault(s) and to suggest proper maintenance actions to minimize associated losses. The complex decision-making process of maintaining such equipment can exploit the principle of CBR and overcome the limitations of the techniques such as artificial neural networks and expert systems. The proposed CBR-based framework is able to provide inference with minimum or even with some missing information to take appropriate actions. This proposed framework would alleviate from the frequent requirement of expert’s interventions and in-depth knowledge of various analysis techniques expected to be known to process engineers. Originality/value The CBR approach has demonstrated its usefulness in many areas of practical applications. The authors perceive its application potentiality to FDI with suggested maintenance actions to alleviate an end-user from the frequent requirement of an expert for diagnosis or inference. The proposed framework can serve as a useful tool/aid to the process engineers to detect and isolate the fault of large-scale complex machinery with suggested actions in a simplified way.


2017 ◽  
Vol 59 ◽  
pp. 28-36 ◽  
Author(s):  
Anis Hamadouche ◽  
Abdelmalek Kouadri ◽  
Azzedine Bakdi

Sign in / Sign up

Export Citation Format

Share Document