A Review on Bone Fracture Detection Techniques using Image Processing

Author(s):  
Rocky S Upadhyay ◽  
Prakashsingh Tanwar
2019 ◽  
Vol 8 (2S3) ◽  
pp. 1246-1249 ◽  

The bone fracture is the most common problem and is likely to occur due to traumatic incidents like vehicle accidents, sporting injuries or due to conditions like osteoporosis, cancer related to bones. Fracture cannot be viewed by naked eye and so X-ray, CT, ultrasound, MRI images are used to detect it. These images cannot be diagnosed directly and henceforth image processing plays a very important role in fracture detection. This paper presents an image processing technique that uses Laplacian method of edge detection for accurate identification of fractured bone area from the X-ray/CT images. From the fractured bone area several parameters like mean, standard deviation are calculated in order to analyze the accuracy and sensitivity of the used technique. NIVISION assistant software is used and the statistical parameters are calculated.


2013 ◽  
Vol 71 (17) ◽  
pp. 31-34 ◽  
Author(s):  
Nathanael E.Jacob ◽  
M. V. Wyawahare

2021 ◽  
Vol 11 (12) ◽  
pp. 3117-3122
Author(s):  
A. Sasidhar ◽  
M. S. Thanabal

Deep learning plays a key role in medical image processing. One of the applications of deep learning models in this domain is bone fracture detection from X-ray images. Convolutional neural network and its variants are used in wide range of medical image processing applications. MURA Dataset is commonly used in various studies that detect bone fractures and this work also uses that dataset, in specific the Humerus bone radiograph images. The humerus dataset in the MURA dataset contains both images with fracture and without fracture. The image with fracture includes images with metals which are removed in this work. Experimental analysis was made with two variants of convolutional neural network, DenseNet169 Model and the VGG Model. In case of the DenseNet169 model, a model with the pre trained weights of ImageNet and one without it is experimented. Results obtained with these variants of CNN are comparedand it shows that DenseNet169 model that uses pre-trained weights of ImageNet model performs better than the other two models.


Quickly creating innovations are developing each day in various fields, particularly in restorative condition. Notwithstanding, still some old strategies are very famous. XRays are one of these systems for identification of bone cracks. By the way, here and there the span of breaks isn't huge and couldn't be recognized effectively. So for the efficient recognition of the crack has become more important . This venture plans to build up an sharp characterization framework that would be equipped for identifying and characterizing the bone cracks. The created framework involves two important stages. In the main stage, the pictures of the breaks are prepared utilizing distinctive picture handling systems in request to identify their area and shapes and the following stage is the arrangement stage, where the sample image is filtered through various filtration stages to obtain the crack effectively, the framework was tried on various bone break pictures and the outcomes show high proficiency what's more, an arrangement rate.


The crack can occur in any bone ofour body. Broken bone is a bone condition that endured a breakdown of bone trustworthiness. The Fracture can't recognize effortlessly by the bare eye, so it is found in the x-beam images. The motivation behind this task is to find the precise territory where the bone fracture happens utilizing X-Ray Bone Fracture Detection by Canny Edge Detection Method. Shrewd Edge Detection technique is an ideal edge identification calculation on deciding the finish of a line with alterable limit and less error rate. The reproduction results have indicated how canny edge detection can help decide area of breaks in x-beam images. In the base paper, the cracked bit is chosen physically to defeat this downside, the proposed technique identify the bone fracture consequently and furthermore it quantifies the parameter like length of the crack, profundity of the fracture and the situation of the crack as for even and vertical pivot. The outcome demonstrates that the proposed technique for crack identification is better. The outcomes demonstrate that calculation is 91% exact and effective


Sign in / Sign up

Export Citation Format

Share Document