Comparative Analysis of Deep Convolutional Neural Network Models for Humerus Bone Fracture Detection

2021 ◽  
Vol 11 (12) ◽  
pp. 3117-3122
Author(s):  
A. Sasidhar ◽  
M. S. Thanabal

Deep learning plays a key role in medical image processing. One of the applications of deep learning models in this domain is bone fracture detection from X-ray images. Convolutional neural network and its variants are used in wide range of medical image processing applications. MURA Dataset is commonly used in various studies that detect bone fractures and this work also uses that dataset, in specific the Humerus bone radiograph images. The humerus dataset in the MURA dataset contains both images with fracture and without fracture. The image with fracture includes images with metals which are removed in this work. Experimental analysis was made with two variants of convolutional neural network, DenseNet169 Model and the VGG Model. In case of the DenseNet169 model, a model with the pre trained weights of ImageNet and one without it is experimented. Results obtained with these variants of CNN are comparedand it shows that DenseNet169 model that uses pre-trained weights of ImageNet model performs better than the other two models.

2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Hongbo Zhao

BACKGROUND: Convolution neural network is often superior to other similar algorithms in image classification. Convolution layer and sub-sampling layer have the function of extracting sample features, and the feature of sharing weights greatly reduces the training parameters of the network. OBJECTIVE: This paper describes the improved convolution neural network structure, including convolution layer, sub-sampling layer and full connection layer. This paper also introduces five kinds of diseases and normal eye images reflected by the blood filament of the eyeball “yan.mat” data set, convenient to use MATLAB software for calculation. METHODSL: In this paper, we improve the structure of the classical LeNet-5 convolutional neural network, and design a network structure with different convolution kernels, different sub-sampling methods and different classifiers, and use this structure to solve the problem of ocular bloodstream disease recognition. RESULTS: The experimental results show that the improved convolutional neural network structure is ideal for the recognition of eye blood silk data set, which shows that the convolution neural network has the characteristics of strong classification and strong robustness. The improved structure can classify the diseases reflected by eyeball bloodstain well.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chen Zhao ◽  
Jungang Han ◽  
Yang Jia ◽  
Lianghui Fan ◽  
Fan Gou

Deep learning technique has made a tremendous impact on medical image processing and analysis. Typically, the procedure of medical image processing and analysis via deep learning technique includes image segmentation, image enhancement, and classification or regression. A challenge for supervised deep learning frequently mentioned is the lack of annotated training data. In this paper, we aim to address the problems of training transferred deep neural networks with limited amount of annotated data. We proposed a versatile framework for medical image processing and analysis via deep active learning technique. The framework includes (1) applying deep active learning approach to segment specific regions of interest (RoIs) from raw medical image by using annotated data as few as possible; (2) generative adversarial Network is employed to enhance contrast, sharpness, and brightness of segmented RoIs; (3) Paced Transfer Learning (PTL) strategy which means fine-tuning layers in deep neural networks from top to bottom step by step to perform medical image classification or regression tasks. In addition, in order to understand the necessity of deep-learning-based medical image processing tasks and provide clues for clinical usage, class active map (CAM) is employed in our framework to visualize the feature maps. To illustrate the effectiveness of the proposed framework, we apply our framework to the bone age assessment (BAA) task using RSNA dataset and achieve the state-of-the-art performance. Experimental results indicate that the proposed framework can be effectively applied to medical image analysis task.


2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 217
Author(s):  
Liyang Wang ◽  
Angxuan Chen ◽  
Yan Zhang ◽  
Xiaoya Wang ◽  
Yu Zhang ◽  
...  

Actinic keratosis (AK) is one of the most common precancerous skin lesions, which is easily confused with benign keratosis (BK). At present, the diagnosis of AK mainly depends on histopathological examination, and ignorance can easily occur in the early stage, thus missing the opportunity for treatment. In this study, we designed a shallow convolutional neural network (CNN) named actinic keratosis deep learning (AK-DL) and further developed an intelligent diagnostic system for AK based on the iOS platform. After data preprocessing, the AK-DL model was trained and tested with AK and BK images from dataset HAM10000. We further compared it with mainstream deep CNN models, such as AlexNet, GoogLeNet, and ResNet, as well as traditional medical image processing algorithms. Our results showed that the performance of AK-DL was better than the mainstream deep CNN models and traditional medical image processing algorithms based on the AK dataset. The recognition accuracy of AK-DL was 0.925, the area under the receiver operating characteristic curve (AUC) was 0.887, and the training time was only 123.0 s. An iOS app of intelligent diagnostic system was developed based on the AK-DL model for accurate and automatic diagnosis of AK. Our results indicate that it is better to employ a shallow CNN in the recognition of AK.


Sign in / Sign up

Export Citation Format

Share Document