Voltage Sag Compensation Using Synchronously Reference Frame Theory Based Dynamic Voltage Restorer

Author(s):  
Tejaswita L. Ilamkar ◽  
Vidyulata Joshi
Author(s):  
ABRARKHAN I. PATHAN ◽  
PROF. S. S. VANAMANE

This paper presents a control technique using Synchronous Reference Frame (SRF) theory to compensate the voltage sag/swell by using Dynamic Voltage Restorer (DVR). DVR is the best known device for mitigation of voltage sag/swell occurred in the system. Nowadays voltage sag is the most common problem customers are facing repeatedly. There is a need for instant mitigation of voltage sag/swell and maintains the load voltage constant. Some simulations are performed in MATLAB/Simulink and results are discussed to validate this theory for instant calculation of reference voltage and quick mitigation of voltage sag or swell from the system.


2021 ◽  
Vol 11 (2) ◽  
pp. 561
Author(s):  
Sergio Constantino Yáñez-Campos ◽  
Gustavo Cerda-Villafaña ◽  
José Merced Lozano-García

Energy quality problems can cause diverse failures of sensitive equipment. Dynamic voltage restorers (DVRs) are devices that have been proposed to protect sensitive loads from voltage sag effects. However, the compensation capacity of DVRs is limited by the amount of energy stored in the restorer. One way to overcome this limitation is to use the interline DVR (IDVR) structure in which two or more DVRs connected to different feeders share a common DC-link. This paper proposes a new IDVR topology based on two three-phase input matrix converters (TTI-MC) without a capacitor in the dc-link. The TTI-MC integrates the power from two feeders and synthesizes the dc-link voltage. The inverters take the dc-link voltage and generate the appropriate compensation voltages to keep the load voltages stable. Each one of the inverters has its own modulation algorithm which are synchronized with the TTI-MC control. Inverter control is carried out in the reference frame dq and a modified space vector pulse width modulation (MSV-PWM) technique is used. TTI-MC control is performed in the dq reference frame with proportional-integral controllers and the modulation is based on the carrier-based pulse width modulation (MCB-PWM) technique. The proposed Two Input Interline DVR (TI-IDVR) extends its compensation range and has multifunctional capabilities. The efficiency of the proposed TI-IDVR is corroborated by simulations on MATLAB/Simulink.


2015 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  
K. Venkateswarlu ◽  
◽  
B. Ashwin Kumar ◽  
N. Srinivas ◽  
V. Mallikarjuna Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document