Convective instability of dielectric liquid subjected to unipolar injection of charge trough free surface

Author(s):  
R.V. Birikh ◽  
A.V. Lyushnin
2015 ◽  
Vol 22 (5) ◽  
pp. 2779-2785 ◽  
Author(s):  
Philippe Traore ◽  
Jian Wu ◽  
Christophe Louste ◽  
Pedro A. Vazquez ◽  
Alberto T. Perez

1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


1975 ◽  
Vol 69 (3) ◽  
pp. 539-563 ◽  
Author(s):  
J. C. Lacroix ◽  
P. Atten ◽  
E. J. Hopfinger

The problem of electric charge convection in a dielectric liquid layer of high ionic purity, when subjected to unipolar injection, is in many ways analogous to that of thermal convection in a horizontal fluid layer heated from below, although no formal analogy can be established. The problem treated is intrinsically more nonlinear than the thermal problem. We consider two asymptotic states of convection: one where the whole motion is dominated by viscosity, and one where inertial effects dominate. In each state, two or three spatial regions are distinguished. From the approximate equations that hold in the different regions, information about the variation of the different quantities with distance from the injector is obtained, and further approximations permit us to establish the dependence of the current density ratioI/I0(called theelectric Nusselt number) on the stability parameterT=M2R= εϕ0/Kρν, and on 1/R= ν/Kϕ0, which is an equivalent Prandtl number (ε is the permittivity, ρ the fluid density,Kthe mobility, ν the kinematic viscosity, and ϕ0the applied voltage). In the viscous state, the analysis givesI/I0∞T½; in the inertial state the lawI/I0∞ (T/R)1/4=M½is obtained. SinceMis independent of the applied voltage, the latter law shows the saturation in the electric Nusselt number observed in earlier experiments. The transition in the states is associated with a transition number (MR)T[gap ] 30, which is an electric Reynolds number, related to an ordinary Reynolds number of about 10.The experimental results, obtained in liquids of very different viscosities and dielectric constants, verify these theoretical predictions; further, they yield more precise numerical coefficients. As for the transition criteria, the experiments confirm that the viscous and inertial effects are of the same order whenRe[gap ] 10. It was also possible to determine roughly the limits of the viscous and inertial states. The viscous analysis remains valid up to a Reynolds number of about 1; the inertial state can be considered valid down to a Reynolds number of 60. Schlieren observations show that the motion has the structure of very stable hexagonal cells at applied voltages just above the critical voltage, which are transformed into unstable filaments when the voltage is increased further. At even higher voltages, the motion finally breaks down into turbulence. It may be of interest to point out that, whenM< 3, the electric Nusselt number approaches 1, which is equivalent to the situation in thermal convection at low Prandtl numbers.


Sign in / Sign up

Export Citation Format

Share Document