applied voltage
Recently Published Documents


TOTAL DOCUMENTS

1234
(FIVE YEARS 284)

H-INDEX

41
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 661
Author(s):  
Katharina Schmidt ◽  
Nektarios Koukourakis ◽  
Jürgen W. Czarske

Adaptive lenses offer axial scanning without mechanical translation and thus are promising to replace mechanical-movement-based axial scanning in microscopy. The scan is accomplished by sweeping the applied voltage. However, the relation between the applied voltage and the resulting axial focus position is not unambiguous. Adaptive lenses suffer from hysteresis effects, and their behaviour depends on environmental conditions. This is especially a hurdle when complex adaptive lenses are used that offer additional functionalities and are controlled with more degrees of freedom. In such case, a common approach is to iterate the voltage and monitor the adaptive lens. Here, we introduce an alternative approach which provides a single shot estimation of the current axial focus position by a convolutional neural network. We use the experimental data of our custom confocal microscope for training and validation. This leads to fast scanning without photo bleaching of the sample and opens the door to automatized and aberration-free smart microscopy. Applications in different types of laser-scanning microscopes are possible. However, maybe the training procedure of the neural network must be adapted for some use cases.


Author(s):  
Wenjing Guo ◽  
Hu Jiyong ◽  
Xiong Yan

Abstract As a similar technology to the near-field static electrospinning, the emerging electrohydrodynamic (EHD) printing technology with digital printing process and compatibility of viscous particle-blended inks is one of the simplest methods of fabricating multifunctional electronic textiles.With increasing demands for textile-based conductive lines with controllable width and excellent electrical performance, it’s of great importance to know the influence of key process parameters on the morphology and electrical properties of EHD-printed UV-curing conductive lines on the fabric. This work will systematically explore the effect of the EHD printing process parameters (i.e. applied voltage, direct-writing height, flow rate and moving velocity of the substrate) on the morphology and electrical performance of the EHD-printed textile-based conductive lines, especially focus on the diffusion and penetration of inks on the rough and porous fabric. The UV-curing nano-silver ink with low temperature and fast curing features was selected, and the line width and electrical resistance of printed lines under different process parameters were observed and measured. The results showed that, unlike previous results about EHD printing on smooth and impermeable substrates, the ink diffusion related to fabric textures had a greater effect on the fabric-based conductive line width than the applied voltage and direct-writing height in the case of a stable jet. Meanwhile, the relationship between the line width and the flow rate met the equation of = 407.28 ∗ 1⁄2 , and the minimum volume on fabric per millimeter was 0.67μL to form continuous line with low electrical resistance. Additionally, the higher substrate moving velocity resulted in a smaller line width, while it deteriorated the thickness uniformity and electrical property of printed lines. Generally, due to the effect of surface structure of the fabric on the spreading and penetrating behavior of inks, the flow rate and the substrate moving velocity are two significant parameters ensuring the electrical property of printed lines. It is believed that these findings will provide some guides for applying electrohydrodynamic printing technology into flexible electronics on the woven fabric.


2022 ◽  
Vol 961 (1) ◽  
pp. 012059
Author(s):  
Sara Mohannad Abd Al-Hamza ◽  
Hayder Mohammed Abd Al-Hamed

Abstract One of the most significant issues that people throughout the world will confront in the future years is a lack of clean and safe water. Anthropogenic activities, in particular, are polluting water systems. With rising population, urbanization, and climate change, water reuse has become a requirement in some areas of the globe, putting pressure on the development of effective water treatment methods for a range of contaminants. High biological oxygen demand (BOD), chemical oxygen demand (COD), oil-grease, and other pollutant loads define dairy sector effluent. Improved technology is required to address these issues. Electrocoagulation is a new type of therapy. It’s simple to use, ecologically friendly, and removes a wide range of contaminants from a variety of water types. The goal of this study was to see how operational factors such applied voltage, number of electrodes, distance between electrodes, electrode shape, and reaction time affected the electrocoagulation of actual dairy effluent. Aluminum and iron electrodes are used for this purpose. It was discovered that raising the applied voltage, reaction time, and decreasing the distance between electrodes improved COD, BOD, EC, TDS, color, and oil-grease removal efficiency. Moreover, switch between square, triangular electrodes and perforated cylindrical. The data show that electrocoagulation is effective at the maximum COD, BOD removal efficiency of first electrode at 20 holes of cylindrical shape is (88.03) %, (87.97) %, respectively. Second triangle shape is (100) %, (100) % respectively. Third square shape is (99.38) %, (99.42) % respectively. the maximum removal of TDS, EC efficiency of first electrode at 20 holes of cylindrical shape is (67.57) %, (62.34) %, respectively. Second triangle shape is (77.45) %, (67.68) % respectively. Third square shape is (81.96) %, (71.25) % respectively. The maximum color and oil-grease removal efficiency of first electrode at 20 holes of cylindrical shape is (100) %, (100) %, respectively. Second triangle shape is (100) %, (100) % respectively. Third square shape is (100) %, (100) % respectively. Electrocoagulation methods for the treatment of dairy wastewaters were shown to be successful in the research. Finally, the findings indicated that electrocoagulation is a technically feasible method for removing contaminants from dairy wastewaters.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianguo Lin ◽  
Wenhao Cai ◽  
Qing Peng ◽  
Fanbin Meng ◽  
Dechuang Zhang

In this work, a highly ordered TiO2 nanotube array on pure titanium (Ti) was prepared by anodization. The effects of the applied voltage and anodization time on the microstructure of the TiO2 nanotube arrays were investigated, and their hydrophilicity was evaluated by the water contact angle measurement. It was found that a highly ordered array of TiO2 nanotubes can be formed on the surface of pure Ti by anodized under the applied voltage of 20 V and the anodization time in the range of 6-12 h, and the nanotube diameter and length can be regulated by anodization time. The as-prepared TiO2 nanotubes were in an amorphous structure. After annealing at 550°C for 3 h, the amorphous TiO2 can be transformed to the anatase TiO2 through crystallization. The anatase TiO2 array exhibited a greatly improved hydrophilicity, depending on the order degree of the array and the diameter of the nanotubes. The sample anodized at 20 V for 12 h and then annealed at 550°C for 3 h exhibited a superhydrophilicity due to its highly ordered anatase TiO2 nanotube array with a tube diameter of 103.5 nm.


2021 ◽  
Author(s):  
Keita TAMURA ◽  
Masafumi MURAJI ◽  
Kenji Tanaka ◽  
Tatsuru Shirafuji

Abstract The mechanism through which nonlinearity is generated in the response waveform of the electric current obtained by applying alternating current voltage to yeast suspension has not yet been elucidated. In this paper, we showed that the response waveform depends on the applied voltage and frequency. The results showed that distortion (nonlinearity) in the waveform increases as the applied voltage increases and/or the frequency decreases. We suggest a model for the generation of nonlinearity based on the influx of potassium ions into the cell via potassium ion channels and transporters in the membrane due to the applied voltage. Furthermore, we validated this model by simulating an electrical circuit.


2021 ◽  
Vol 11 (4) ◽  
pp. 91-113
Author(s):  
Dr. Abbas K. Algburi

During the extraction process of crude oil, the removal of water from a high stability water-in-crude oil emulsions is life-threatening for the production of a profitable product. However, several technologies of separation exist today, e.g. stripping columns, centrifugal separators, coalescence separators, vacuum distillation systems and gravity separators, almost all of these approaches are not able to completely remove water from water-in-crude oil emulsions besides their high cost. In this study, the preparation of a high internal phase emulsion (HIPE) was achieved on a laboratory scale. Subsequently, it was polymerized and sulphonated to produce a hydrophilic macroporous polyHIPE polymer (PHP) called silane (vinyl trimethoxy silane) PHP with a relatively high surface area of 104 m 2/g. It demonstrates high water absorption capability in addition to its ability to remove surface active substances such as Mg, Ca, Na and Cl, from crude oil which cause crude oil emulsification. The rates of demulsification of water-in-crude oil emulsions were examined in high AC field under various emulsion inlet flow rates from 100 ml/min to 1500 ml/min and different applied voltages from 1-5 kV (equivalent to 14-69 kV/m) by using a model of an electrostatic separator combined with silane PHP as absorber. It was found that the best separation efficiency was 91% with applied voltage of 5 kV and emulsion inlet flow rate of 100 ml/min. When the spent silane PHP was reused in the demulsification process under similar conditions, a separation efficiency of up to 73% was achieved. Also, it was noticed that the separation efficiency was increased with the increase in applied voltage and reduction in the inlet flow rate of emulsion. Moreover, the original or spent silane PHP were able to remove the undesired metals present in the crude oil. Keywords: Demulsification; Emulsion flow rate; Separation efficiency; Electrostatic Separator;  Electric field strength.


2021 ◽  
Vol 11 (24) ◽  
pp. 12020
Author(s):  
Yong Hae Heo ◽  
Dong-Soo Choi ◽  
Do Eun Kim ◽  
Sang-Youn Kim

This paper presents an electroactive and soft vibrotactile actuator based on a dielectric elastomer. The vibrotactile actuator is composed of an upper layer, an adhesive tape layer, a dielectric layer with bumps, and a lower layer. When a voltage is applied to the actuator, an electrostatic force created between the upper and lower layers pulls the upper layer down, compressing the dielectric layer. As soon as the applied voltage is released, the upper layer is quickly restored to its initial state by the elastic force of the compressed dielectric elastomer. Because two forces contribute to the actuation at the same time, the created vibration is sufficiently strong to stimulate human mechanoreceptors. When the applied voltage is removed, the upper layer and dielectric elastomer return to their initial shapes. We conducted experiments to determine the best weight ratio of polydimethylsiloxane (PDMS) and Ecoflex, and to quantitatively investigate the haptic performance of the proposed vibrotactile actuator. The experiments clearly show that the plasticized vibrotactile actuator can create a variety of haptic sensations over a wide frequency range.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7775
Author(s):  
Elena Fomenko ◽  
Igor Altman ◽  
Lucija Boskovic ◽  
Igor E. Agranovski

The paper studies nanoparticle formation in a glowing wire generator (GWG), in which the gas carrier flows around heated metal wire, producing aerosols from a vapor released from the surface. The device has been customized, enabling the use of a double-wire in different orientations in regard to the gas flow. Such alterations provided different effective distances between wires enabling investigation of their mutual influence. Concentration of particles produced in the GWG at different parameters (applied voltage and a gas flow) was carefully measured and analysed. Different regimes of a nanoparticle nucleation were identified that resulted from the applied voltage variation and the gas flow direction. In particular, independent nucleation of nanoparticles on both parts of the wire occurred in the wire plane’s configuration perpendicular to the gas flow, whilst dependent nucleation of nanoparticles was observed at a certain specific set of parameters in the configuration, in which the wire plane was parallel to the gas flow. Two corresponding functions were introduced in order to quantify those nucleation regimes and they tend to zero when either independent or dependent nucleation occur. The peculiarities found ought to be considered when designing the multi-wire GWGs in order to further extend the device’s range for industrial applications.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1541
Author(s):  
Masahiro Ito ◽  
Satoshi Ohmi ◽  
Kohki Takatoh

Stabilized reverse twisted nematic liquid crystal devices (RTN-LCDs) were fabricated using formation of a polymer matrix under UV irradiation with an applied voltage (sustain voltage) in the vicinity of the alignment layers. In the absence of an applied voltage, the non-stabilized RTN structure gradually returns to a splay twist structure. The sustain voltage was decreased with an increase in temperature. A stabilized long-pitch supertwisted nematic (LPSTN) structure could also be formed during the RTN structure stabilization process with a much lower sustain voltage at a temperature near the clearing point. The chiral pitch for the LPSTN structure is longer than that for a typical STN structure. LPSTN-LCDs similar to RTN-LCDs show a large reduction in both the threshold and saturation voltage compared with those for TN-LCDs consisted of the same LC materials. Furthermore, a notable feature of LPSTN-LCDs is a change to a TN structure when a high voltage is applied. A black state can be realized due to the change from the LPSTN structure to the RTN structure unlike the typical STN mode under the crossed nicols condition. In contrast STN-LCDs retain their color due to the retardation because the RTN and LPSTN states are considered topologically equivalent.


Author(s):  
J. Pinot ◽  
R. Botrel ◽  
F. Durut ◽  
L. Reverdy ◽  
L. Pescayre ◽  
...  

The aim of our work is to understand the mechanism governing the growth of metallic foams synthetized by plasma electrolysis deposition. This paper reports the influence of the applied voltage on the morphology and microstructure of copper and gold foams. The evolution of strands morphology and size is investigated by field emission scanning electronic microscopy (FE-SEM). The role of the voltage in the growth of metallic foams is then discussed. Finally, the crystalline structure of the strands is determined by transmission electronic microscopy (TEM) and selected area electron diffraction.


Sign in / Sign up

Export Citation Format

Share Document