Hearing loss identification via wavelet entropy and combination of Tabu search and particle swarm optimization

Author(s):  
Chaosheng Tang ◽  
Elizabeth Lee
Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3052 ◽  
Author(s):  
Ali Ahmadian ◽  
Ali Elkamel ◽  
Abdelkader Mazouz

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing the total cost of the objective function with technical constraints make it a combinatorial problem which should be solved by powerful optimization algorithms. In this paper, a new improved hybrid Tabu search/particle swarm optimization algorithm is proposed to optimize the electric expansion planning. The proposed method is analyzed both mathematically and experimentally and it is applied to three different electric distribution networks as case studies. Numerical results and comparisons are presented and show the efficiency of the proposed algorithm. As a result, the proposed algorithm is more powerful than the other algorithms, especially in larger dimension networks.


Author(s):  
Cheng-Hung Chen ◽  
Marco P. Schoen ◽  
Ken W. Bosworth

A novel Condensed Hybrid Optimization (CHO) algorithm using Enhanced Continuous Tabu Search (ECTS) and Particle Swarm Optimization (PSO) is proposed. The proposed CHO algorithm combines the respective strengths of ECTS and PSO. The ECTS is a modified Tabu Search (TS), which has good search capabilities on large search spaces. In this study, ECTS is utilized to define smaller search spaces, which are used in a second stage by the basic PSO to find the respective local optimum. The ECTS covers the global search space by using a TS concept called diversification and then selects the most promising areas in the search space. Once the promising regions in the search space are defined, the proposed CHO algorithm employs another TS concept called intensification in order to search the promising area thoroughly. The proposed CHO algorithm is tested with the multi-dimensional Hyperbolic and Rosenbrock problems. Compared to other four algorithms, the simulations results indicate that the accuracy and effectiveness of the proposed CHO algorithm.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
José Eloim Silva de Macêdo ◽  
José Roberto Gonçalves de Azevedo ◽  
Saulo de Tarso Marques Bezerra

ABSTRACT Water distribution network (WDN) optimization has received special attention from various technicians and researchers, mainly due to its high costs of implementation, operation and maintenance. However, the low computational efficiency of most developed algorithms makes them difficult to apply in large-scale WDN design problems. This article presents a hybrid particle swarm optimization and tabu search (H-PSOTS) algorithm for WDN design. Incorporating tabu search (TS) as a local improvement procedure enables the H-PSOTS algorithm to avoid local optima and show satisfactory performance. Pure particle swarm optimization (PSO) and H-PSOTS algorithms were applied to three benchmark networks proposed in the literature: the Balerma irrigation network, the ZJ network and the Rural network. The hybrid methodology obtained good results when seeking an optimal solution and revealed high computational performance, making it a new option for the optimal design of real water distribution networks.


Sign in / Sign up

Export Citation Format

Share Document