An Improved Brain Tumor Segmentation Method from MRI Brain Images

Author(s):  
A. Harshavardhan ◽  
Suresh Babu ◽  
T. Venugopal
Author(s):  
M. C. Jobin Christ ◽  
X. Z. Gao ◽  
Kai Zenger

Segmentation of an image is the partition or separation of the image into disjoint regions of related features. In clinical practice, magnetic resonance imaging (MRI) is used to differentiate pathologic tissues from normal tissues, especially for brain tumors. The main objective of this paper is to develop a system that can follow a medical technician way of work, considering his experience and knowledge. In this paper, a step by step methodology for the automatic MRI brain tumor segmentation and classification is presented. Initially acquired MRI brain images are preprocessed by the Gaussian filter. After preprocessing, initial segmentation is done by hierarchical topology preserving map (HTPM). From the resultant images, the features are extracted using gray level co-occurrence matrix (GLCM) method, and the same are given as inputs to adaptive neuro fuzzy inference systems (ANFIS) for final segmentation and the classification of brain images into normal or abnormal. In case of abnormal, the MRI brain images are classified as benign subject (tumor without cancerous tissues) or malignant subject (tumor with cancerous tissues). Based on the analysis, it has been discovered that the overall accuracy of classification of our method is above 94%, and F1-score is about 1. The simulation results also show that the proposed approach is a valuable diagnosing technique for the physicians and radiologists to detect the brain tumors.


2021 ◽  
Vol 7 (2) ◽  
pp. 026-036
Author(s):  
Wedad Abdul Khuder Naser ◽  
Eman Abdulmunem Kadim ◽  
Safana Hyder Abbas

Magnetic Resonance Image (MRI) brain images have an essential role in medical analysis and cancer identification .In this paper multi kernel SVM algorithm is used for MRI brain tumor detection. The proposed work is involving the following stages: image acquisition, image preprocessing, feature extraction and tumor classification. An automatic threshold selection region based segmentation method called Otsu is used for thresholding during preprocessing stage. SVM classification algorithm with four different kernels are used to determine the normal and abnormal images. SVM with quadratic kernel results in best classification accuracy of 86.5%.


Author(s):  
Jianxin Zhang ◽  
Xiaogang Lv ◽  
Qiule Sun ◽  
Qiang Zhang ◽  
Xiaopeng Wei ◽  
...  

Background: Glioma is one of the most common and aggressive primary brain tumors that endanger human health. Tumors segmentation is a key step in assisting the diagnosis and treatment of cancer disease. However, it is a relatively challenging task to precisely segment tumors considering characteristics of brain tumors and the device noise. Recently, with the breakthrough development of deep learning, brain tumor segmentation methods based on fully convolutional neural network (FCN) have illuminated brilliant performance and attracted more and more attention. Methods: In this work, we propose a novel FCN based network called SDResU-Net for brain tumor segmentation, which simultaneously embeds dilated convolution and separable convolution into residual U-Net architecture. SDResU-Net introduces dilated block into a residual U-Net architecture, which largely expends the receptive field and gains better local and global feature descriptions capacity. Meanwhile, to fully utilize the channel and region information of MRI brain images, we separate the internal and inter-slice structures of the improved residual U-Net by employing separable convolution operator. The proposed SDResU-Net captures more pixel-level details and spatial information, which provides a considerable alternative for the automatic and accurate segmentation of brain tumors. Results and Conclusion: The proposed SDResU-Net is extensively evaluated on two public MRI brain image datasets, i.e., BraTS 2017 and BraTS 2018. Compared with its counterparts and stateof- the-arts, SDResU-Net gains superior performance on both datasets, showing its effectiveness. In addition, cross-validation results on two datasets illuminate its satisfying generalization ability.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2021 ◽  
Vol 11 (1) ◽  
pp. 380-390
Author(s):  
Pradipta Kumar Mishra ◽  
Suresh Chandra Satapathy ◽  
Minakhi Rout

Abstract Segmentation of brain image should be done accurately as it can help to predict deadly brain tumor disease so that it can be possible to control the malicious segments of brain image if known beforehand. The accuracy of the brain tumor analysis can be enhanced through the brain tumor segmentation procedure. Earlier DCNN models do not consider the weights as of learning instances which may decrease accuracy levels of the segmentation procedure. Considering the above point, we have suggested a framework for optimizing the network parameters such as weight and bias vector of DCNN models using swarm intelligent based algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). The simulation results reveals that the WOA optimized DCNN segmentation model is outperformed than other three optimization based DCNN models i.e., GA-DCNN, PSO-DCNN, GWO-DCNN.


Sign in / Sign up

Export Citation Format

Share Document