gray wolf
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 287)

H-INDEX

37
(FIVE YEARS 7)

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122800
Author(s):  
Jian Wang ◽  
Yi-Peng Xu ◽  
Chen She ◽  
Ping Xu ◽  
Hamid Asadi Bagal

2022 ◽  
Author(s):  
Xiu-wu Yu ◽  
Lu-ping Huang ◽  
Yong Liu ◽  
Ke Zhang ◽  
Pei Li ◽  
...  
Keyword(s):  

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yi Xun ◽  
Guangpei Ren

To improve the effect of urban agricultural garden landscape planning and design, this paper combines the agricultural Internet of Things technology to construct a smart garden planning and design system. Moreover, this paper selects the LEACH protocol that can support monitoring for a long time according to actual application needs, introduces the latest swarm intelligence optimization algorithm, the gray wolf algorithm, to optimize some of the problems in the LEACH protocol, and conducts simulation experiments on the improved algorithm. The simulation experiment results show that the improved algorithm has obvious advantages in cluster head selection, data transmission within the cluster, and route maintenance. After constructing a smart garden planning system based on the agricultural Internet of Things, the effect of the agricultural Internet of Things data processing in this paper is evaluated. Finally, this paper constructs a garden simulation system and analyzes the performance of the system. The results verify that the agricultural Internet of Things has a good effect in the planning and design of smart gardens.


Author(s):  
Saorabh Kumar Mondal ◽  
Arpitam Chatterjee ◽  
Bipan Tudu

Image contrast enhancement (CE) is a frequent image enhancement requirement in diverse applications. Histogram equalization (HE), in its conventional and different further improved ways, is a popular technique to enhance the image contrast. The conventional as well as many of the later versions of HE algorithms often cause loss of original image characteristics particularly brightness distribution of original image that results artificial appearance and feature loss in the enhanced image. Discrete Cosine Transform (DCT) coefficient mapping is one of the recent methods to minimize such problems while enhancing the image contrast. Tuning of DCT parameters plays a crucial role towards avoiding the saturations of pixel values. Optimization can be a possible solution to address this problem and generate contrast enhanced image preserving the desired original image characteristics. Biological behavior-inspired optimization techniques have shown remarkable betterment over conventional optimization techniques in different complex engineering problems. Gray wolf optimization (GWO) is a comparatively new algorithm in this domain that has shown promising potential. The objective function has been formulated using different parameters to retain original image characteristics. The objective evaluation against CEF, PCQI, FSIM, BRISQUE and NIQE with test images from three standard databases, namely, SIPI, TID and CSIQ shows that the presented method can result in values up to 1.4, 1.4, 0.94, 19 and 4.18, respectively, for the stated metrics which are competitive to the reported conventional and improved techniques. This paper can be considered a first-time application of GWO towards DCT-based image CE.


2021 ◽  
Vol 20 (4) ◽  
pp. 604-612
Author(s):  
Juhriyansyah Dalle ◽  
Dr. Paitoon Chettham ◽  
Gunawan Widjaja ◽  
Egor Dudukalov ◽  
A.Heri Iswanto ◽  
...  

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Su Li ◽  
Zhihong Yan ◽  
Jinxia Sha ◽  
Jing Gao ◽  
Bingqing Han ◽  
...  

The reasonable allocation of water resources using different optimization technologies has received extensive attention. However, not all optimization algorithms are suitable for solving this problem because of its complexity. In this study, we applied an ameliorative multi-objective gray wolf optimizer (AMOGWO) to the problem. For AMOGWO, which is based on the multi-objective gray wolf optimizer, we improved the distance control parameter calculation method, added crowding degree for the archive, and optimized the selection mechanism for leader wolves. Subsequently, AMOGWO was used to solve the multi-objective optimal allocation of water resources in Handan, China, for 2035, with the maximum economic benefit and minimum social water shortage used as objective functions. The optimal results obtained indicate a total water demand in Handan of 2740.43 × 106 m3, total water distribution of 2442.23 × 106 m3, and water shortage of 298.20 × 106 m3, which is consistent with the principles of water resource utilization in Handan. Furthermore, comparison results indicate that AMOGWO has substantially enhanced convergence rates and precision compared to the non-dominated sorting genetic algorithm II and the multi-objective particle swarm optimization algorithm, demonstrating relatively high reliability and applicability. This study thus provides a new method for solving the multi-objective optimal allocation of water resources.


2021 ◽  
Vol 14 (1) ◽  
pp. 296
Author(s):  
Mohanad A. Deif ◽  
Ahmed A. A. Solyman ◽  
Mohammed H. Alsharif ◽  
Seungwon Jung ◽  
Eenjun Hwang

Temperature forecasting is an area of ongoing research because of its importance in all life aspects. However, because a variety of climate factors controls the temperature, it is a never-ending challenge. The numerical weather prediction (NWP) model has been frequently used to forecast air temperature. However, because of its deprived grid resolution and lack of parameterizations, it has systematic distortions. In this study, a gray wolf optimizer (GWO) and a support vector machine (SVM) are used to ensure accuracy and stability of the next day forecasting for minimum and maximum air temperatures in Seoul, South Korea, depending on local data assimilation and prediction system (LDAPS; a model of local NWP over Korea). A total of 14 LDAPS models forecast data, the daily maximum and minimum air temperatures of in situ observations, and five auxiliary data were used as input variables. The LDAPS model, the multimodal array (MME), the particle swarm optimizer with support vector machine (SVM-PSO), and the conventional SVM were selected as comparison models in this study to illustrate the advantages of the proposed model. When compared to the particle swarm optimizer and traditional SVM, the Gray Wolf Optimizer produced more accurate results, with the average RMSE value of SVM for T max and T min Forecast prediction reduced by roughly 51 percent when combined with GWO and 31 percent when combined with PSO. In addition, the hybrid model (SVM-GWO) improved the performance of the LDAPS model by lowering the RMSE values for T max Forecast and T min Forecast forecasting from 2.09 to 0.95 and 1.43 to 0.82, respectively. The results show that the proposed hybrid (GWO-SVM) models outperform benchmark models in terms of prediction accuracy and stability and that the suggested model has a lot of application potentials.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 130
Author(s):  
Omar Rodríguez-Abreo ◽  
Juvenal Rodríguez-Reséndiz ◽  
L. A. Montoya-Santiyanes ◽  
José Manuel Álvarez-Alvarado

Machinery condition monitoring and failure analysis is an engineering problem to pay attention to among all those being studied. Excessive vibration in a rotating system can damage the system and cannot be ignored. One option to prevent vibrations in a system is through preparation for them with a model. The accuracy of the model depends mainly on the type of model and the fitting that is attained. The non-linear model parameters can be complex to fit. Therefore, artificial intelligence is an option for performing this tuning. Within evolutionary computation, there are many optimization and tuning algorithms, the best known being genetic algorithms, but they contain many specific parameters. That is why algorithms such as the gray wolf optimizer (GWO) are alternatives for this tuning. There is a small number of mechanical applications in which the GWO algorithm has been implemented. Therefore, the GWO algorithm was used to fit non-linear regression models for vibration amplitude measurements in the radial direction in relation to the rotational frequency in a gas microturbine without considering temperature effects. RMSE and R2 were used as evaluation criteria. The results showed good agreement concerning the statistical analysis. The 2nd and 4th-order models, and the Gaussian and sinusoidal models, improved the fit. All models evaluated predicted the data with a high coefficient of determination (85–93%); the RMSE was between 0.19 and 0.22 for the worst proposed model. The proposed methodology can be used to optimize the estimated models with statistical tools.


Sign in / Sign up

Export Citation Format

Share Document