Islanding detection using Hilbert Transform in a distributed generation environment

Author(s):  
Maibam Shillakanta Singh ◽  
Premalata Jena ◽  
Jitendra Kumar ◽  
Saran Satsangi
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 130
Author(s):  
Mazaher Karimi ◽  
Mohammad Farshad ◽  
Qiteng Hong ◽  
Hannu Laaksonen ◽  
Kimmo Kauhaniemi

This article proposes a new passive islanding detection technique for inverter-based distributed generation (DG) in microgrids based on local synchrophasor measurements. The proposed method utilizes the voltage and current phasors measured at the DG connection point (point of connection, PoC). In this paper, the rate of change of voltages and the ratio of the voltage and current magnitudes (VoI index) at the PoC are monitored using micro-phasor measurement units. The developed local measurements based decentralized islanding detection technique is based on the VoI index in order to detect any kind of utility grid frequency fluctuations or oscillations and distinguishing them from islanding condition. The simulation studies confirm that the proposed scheme is accurate, robust, fast, and simple to implement for inverter-based DGs.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 228 ◽  
Author(s):  
Gundala Srinivasa Rao ◽  
G. Kesava Rao

The penetration of Distributed generation (DG) ensures the increase of demand for consistent, reasonable and spotless electricity facing with some design and operational challenges such as islanding. Several active and passive methods have been suggested in the past to detect islanding. Since they suffer from the large non detection zone and a high cost. In order to defeat such issues we propose a SVM based pattern recognising approach for islanding detection in a multiple DG system. The results show that our proposed method detects islanding with high accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


Sign in / Sign up

Export Citation Format

Share Document