Optical Performance Analysis of UVC-LED Package Structure Based on Ray-Tracing Simulation

Author(s):  
Jinyang Li ◽  
Wangyun Li ◽  
Daoguo Yang ◽  
Yikang Qin ◽  
Sicheng Cao ◽  
...  
2014 ◽  
Author(s):  
Philippe Voarino ◽  
César Domínguez ◽  
Roy Bijl ◽  
Peter Penning

2013 ◽  
Vol 479-480 ◽  
pp. 161-165 ◽  
Author(s):  
Yi Cheng Chen ◽  
Chia Chi You

This study explores the optimum design of secondary optical element (SOE) for a non-coplanar two-reflector solar concentrator. The non-coplanar solar concentrator comprises a primary parabolic mirror and a secondary hyperbolic mirror. Ray tracing simulation is adopted to investigate the optical performance, including the acceptance angle and the optical efficiency, of the solar concentrator with various designs of SOE. Finally, preliminary optimum designs of SOE are presented and discussed.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1056
Author(s):  
Marcus Baumgart ◽  
Norbert Druml ◽  
Markus Dielacher ◽  
Cristina Consani

Robust, fast and reliable examination of the surroundings is essential for further advancements in autonomous driving and robotics. Time-of-Flight (ToF) camera sensors are a key technology to measure surrounding objects and their distances on a pixel basis in real-time. Environmental effects, like rain in front of the sensor, can influence the distance accuracy of the sensor. Here we use an optical ray-tracing based procedure to examine the rain effect on the ToF image. Simulation results are presented for experimental rain droplet distributions, characteristic of intense rainfall at rates of 25 mm/h and 100 mm/h. The ray-tracing based simulation data and results serve as an input for developing and testing rain signal suppression strategies.


Author(s):  
Tejas U. Ulavi ◽  
Jane H. Davidson ◽  
Tim Hebrink

The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun Wook Moon ◽  
Woojoong Kim ◽  
Sewoong Kwon ◽  
Jaeheung Kim ◽  
Young Joong Yoon

A simple and exact closed-form equation to determine a penetrated ray path in a ray tracing is proposed for an accurate channel prediction in indoor environments. Whereas the penetrated ray path in a conventional ray tracing is treated as a straight line without refraction, the proposed method is able to consider refraction through the wall in the penetrated ray path. Hence, it improves the accuracy in ray tracing simulation. To verify the validation of the proposed method, the simulated results of conventional method, approximate method, and proposed method are compared with the measured results. The comparison shows that the proposed method is in better agreement with the measured results than the conventional method and approximate method, especially in high frequency bands.


Sign in / Sign up

Export Citation Format

Share Document