acceptance angle
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 34 (4) ◽  
pp. 10-16
Author(s):  
Yasser Yassin Khudair ◽  
Alaa Badr Hasan

     In this paper, a solar concentrator is designed in the form of a concave half-cylindrical mirror consisting of polygonal reflective surface plates. The plates are arranged to give a hemispherical shape to the design. These surfaces work to receive solar radiation and focusing by reflecting it to the receiver that is placed in front of the reflecting surfaces. The results are compared with a system consisting of a concave reflecting surface of the same dimensions to obtain a good criterion for evaluating the design performance. The results showed a low acceptance angle for the design for all the samples used due to the geometrical design nature. The optical efficiency affected by the angle of incidence greatly by all the samples used, which differ in the concentration ratio, width and location of the receiver.


2021 ◽  
Vol 9 ◽  
Author(s):  
Seung Jin Oh ◽  
Hyungchan Kim ◽  
Youngsun Hong

The concentration ratio is one of the most important characteristics in designing a Cassegrain solar concentrator since it directly affects the performance of high-density solar energy applications such as concentrated photovoltaics (CPVs). In this study, solar concentrator modules that have different configurations were proposed and their performances were compared by means of a Monte Carlo ray-tracing algorithm to identify the optimal configurations. The first solar concentrator design includes a primary parabolic concentrator, a parabolic secondary reflector, and a homogenizer. The second design, on the other hand, includes a parabolic primary concentrator, a secondary hyperbolic concentrator, and a homogenizer. Two different reflectance were applied to find the ideal concentration ratio and the actual concentration ratio. In addition, uniform rays and solar rays also were compared to estimate their efficiency. Results revealed that both modules show identical concentration ratios of 610 when the tracking error is not considered. However, the concentration ratio of the first design rapidly drops when the sun tracking error overshoots even 0.1°, whereas the concentration ratio of the second design remained constant within the range of the 0.8° tracking error. It was concluded that a paraboloidal reflector is not appropriate for the second mirror in a Cassegrain concentrator due to its low acceptance angle. The maximum collection efficiency was achieved when the f-number is smaller and the rim angle is bigger and when the secondary reflector is in a hyperboloid shape. The target area has to be rather bigger with a shorter focal length for the secondary reflector to obtain a wider acceptance angle.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012003
Author(s):  
Firdaus Muhammad-Sukki ◽  
Haroon Farooq ◽  
Siti Hawa Abu-Bakar ◽  
Jorge Alfredo Ardila-Rey ◽  
Nazmi Sellami ◽  
...  

Abstract The world has recorded an increasing interest and staggering investment in renewable technology in the last two decades, specifically in solar photovoltaic (PV). Concentrating PV (CPV) is one of PV’s technology advancements and is gaining popularity for integration in a building. Various CPV designs are currently being investigated by researchers. The aim of this paper is to design and develop a MATLAB programme that can predict the electrical properties of a static concentrator that is designed with a ±40° acceptance angle. The programme was utlizied to determine the angular characteristics of the static concentrator between acceptance angle of -50° and 50°. It is proposed that the optoelectronic gain, Copto-e values be incorporated into the model to simulate a CPV design. The incident angle values (within ±50°) were chosen to demonstrate that the static concentrator could collect solar energy within its designed acceptance angle of ±40°. The current-voltage and power-voltage characteristics are generated for each simulation, and critical parameters such as the maximum power, open-circuit voltage, short-circuit current, and optoelectronic gain were identified and measured. The programme was found to be able to determine the electrical properties for the static concentrator.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Takayuki Muro ◽  
Tomohiro Matsushita ◽  
Kazumi Sawamura ◽  
Jun Mizuno

A wide-acceptance-angle spherical grid composed of numerous micro cylindrical holes was developed to be used for the retarding grid of a display-type retarding field analyzer (RFA) and to enhance the energy resolution (E/ΔE). Each cylindrical hole with a diameter of 50 µm and a depth of 80 µm is directed to the spherical center. The inner radius of the spherical grid is 40 mm. The holed area corresponds to an acceptance angle of ±52°. The E/ΔE of an RFA equipped with the developed holed grid was estimated to be 2000 from a measured Au 4f photoemission spectrum. A clear photoelectron hologram was observed in the Mo 4p core-level region of MoS2, indicating that the RFA with the holed grid is effective for photoelectron holography.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4603
Author(s):  
Carlo Renno

Since there are not standard configurations of the Concentrating Photovoltaic (CPV) systems, several types of optics are designed and analyzed. In this paper, the optical performances of a spherical mirror and a commonly used Fresnel lens of the same diameter are compared, highlighting their impact on the CPV system energy performance. First, the absolute and percentual variation trends of optical concentration factor and optical efficiency as function of the distance between each optical system and receiver are analyzed. The concentration levels obtained by means of the spherical mirror are much higher than the Fresnel lens, with maximum values of optical efficiency equal to 72.8% and 24.1%, respectively. The analysis of the concentration reduction due to a solar-tracking failure has also allowed the estimation of the acceptance angle, thus observing that the spherical mirror requires a less accurate solar tracker with respect to the Fresnel lens, especially if a secondary optics is adopted. As for the energy comparison, the spherical mirror allows increase of the Triple-Junction (TJ) cell temperature up to about 65 °C higher than the environmental temperature and to reach an electrical power of about 15 W in correspondence of a concentrated solar radiation of 470 kW/m2. Finally, the deviation between the cumulative electric energy produced by the TJ cell in the cases of correct and incorrect solar tracking and for the configurations with and without secondary optics has been also evaluated for both the optics. The equations experimentally obtained in this paper represent a more accurate tool to describe the physical phenomenon in comparison with the equations theoretically obtained for similar CPV systems. The results can be used to design a real CPV system that adopts a Fresnel lens or a spherical mirror. The equations experimentally obtained in this paper represent a more accurate tool to describe the physical phenomenon in comparison with the equations theoretically obtained for similar CPV systems. The results can be used to design a real CPV system that adopts a Fresnel lens or a spherical mirror.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 242
Author(s):  
An-Chung Chiang ◽  
Yuan-Yao Lin ◽  
Shou-Tai Lin ◽  
Yen-Yin Lin

Electro-optic (EO) Bragg deflectors have been extensively used in a variety of applications. Recent developments show that bandwidths and deflection efficiencies, as well as angular bandwidths, would significantly limit the utilization of EO Bragg deflectors, especially for applications which need strong focusing, such as intra-cavity applications. In this paper, we introduce a broadband EO Bragg deflector based on periodically-poled lithium niobate with a monolithic dual-grating design. We analyzed the deflection properties of this device by using a modified coupled wave theory and showed that this device can be still efficient for a small beam radius under strong focusing, whereas a single-grating one becomes very inefficient. Using a 1064-nm laser beam with a 100-μm beam radius, we obtained a 74% deflection efficiency with a 190-V bias voltage with a 0.5-mm-thick and 7.5-mm-long dual-grating sample. The acceptance angle for the Bragg condition of this device is as large as a few tens of mrad. The potential bandwidth of this device exceeds 500 nm if the proper operation region is chosen.


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Tomasz Fornal ◽  
Monika Kubkowska ◽  
Ireneusz Książek ◽  
Dominik Stańczak ◽  
Sławomir Jabłoński ◽  
...  

AbstractThe “C/O Monitor” for Wendelstein 7-X (W7-X) is a dedicated light impurity XUV spectrometer intended to measure Lyman-α transitions of hydrogen-like ions of four low-Z impurities—boron (4.9 nm), carbon (3.4 nm), nitrogen (2.5 nm) and oxygen (1.9 nm). Since the discussed diagnostic will deliver continuous information about the line intensities, it is crucial to understand the origin of the obtained signals with respect to the experimental plasma conditions (electron temperature and density). This, however, might be difficult because of the broad acceptance angle of the spectrometer and irregular shape of the plasma edge or SOL where the radiation is expected to mostly come from, depending on the plasma temperature. For that reason, numerous analyses assuming various ranges of electron density and temperature profiles of the W7-X plasmas have been performed (assuming corona equilibrium and neglecting impurity transport processes). The aim of this work is to estimate the expected radiant flux and determine the sensitivity of the system on impurity-level changes. It will allow to improve understanding between measured signal and impurity concentration.


2021 ◽  
Vol 11 (9) ◽  
pp. 3894
Author(s):  
Firdaus Muhammad-Sukki ◽  
Haroon Farooq ◽  
Siti Hawa Abu-Bakar ◽  
Jorge Alfredo Ardila-Rey ◽  
Nazmi Sellami ◽  
...  

For the past twenty years, there has been increasing interest and investment in solar photovoltaic (PV) technology. One particular area of interest is the development of concentrating PV (CPV), especially for use in building integration. Many CPV designs have been developed and investigated. This paper aims at producing a mathematical modelling using MATLAB programme to predict the current-voltage (I-V) and power-voltage (P-V) characteristics of a static CPV. The MATLAB programme could also simulate the angular response of the CPV designs-which has never been explored in the previous literature. In this paper, a CPV known as the rotationally asymmetrical dielectric totally internally reflecting concentrator (RADTIRC) was analysed. A specific RADTIRC design that has an acceptance angle of ±40° was investigated in this paper. A mathematical modelling was used to simulate the angular characteristics of the RADTIRC from −50° to 50° with an increment 5°. For any CPV, we propose that the value of opto-electronic gain, Copto-e needs to be included in the mathematical model, which were obtained from experiments. The range of incident angle (±50°) was selected to demonstrate that the RADTIRC is capable of capturing the sun rays within its acceptance angle of ±40°. In each simulation, the I-V and P-V characteristics were produced, and the short circuit current (Isc), the open-circuit voltage (Voc), the maximum power (Pmax), the fill factor (FF) and the opto-electronic gain (Copto-e) were determined and recorded. The results from the simulations were validated via experiments. It was found that the simulation model is able to predict the I-V and P-V characteristics of the RADTIRC as well as its angular response, with the highest error recorded for the Isc, Voc, Pmax, FF and Copto-e was 2.1229%, 5.3913%, 9.9681%, 4.4231% and 0.0000% respectively when compared with the experiment.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1819
Author(s):  
Mazhar Sher ◽  
Benjamin Coleman ◽  
Massimo Caputi ◽  
Waseem Asghar

The detection of viruses using imaging techniques is challenging because of the weak scattering of light generated by the targets of sizes in the nanometer range. The system we have developed overcomes the light scattering problems by utilizing antibody-coated microbeads of higher index of refraction that can specifically bind with viruses and increase the acceptance angle. Using the new technology, we have developed a portable, cost-effective, and field-deployable platform for the rapid quantification of HIV-1 viral load for point-of-care (POC) settings. The system combines microfluidics with a wide field of view lensless imaging technology. Highly specific antibodies are functionalized to a glass slide inside a microchip to capture HIV-1 virions. The captured virions are then bound by antibody-conjugated microbeads, which have a higher refraction index. The microbeads—HIV-1 virions complexes generate diffraction patterns that are detected with a custom-built imaging setup and rapidly and accurately quantified by computational analysis. This platform technology enables fast nanoscale virus imaging and quantification from biological samples and thus can play a significant role in the detection and management of viral diseases.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1108
Author(s):  
Ewa Sudoł ◽  
Ewa Szewczak ◽  
Marcin Małek

This paper attempts to compare three methods of testing floor slip resistance and the resulting classifications. Polished, flamed, brushed, and grained granite slabs were tested. The acceptance angle values (αob) obtained through the shod ramp test, slip resistance value (SRV), and sliding friction coefficient (μ) were compared in terms of the correlation between the series, the precision of each method, and the classification results assigned to each of the three obtained indices. It was found that the evaluation of a product for slip resistance was strongly related to the test method used and the resulting classification method. This influence was particularly pronounced for low roughness slabs. This would result in risks associated with inadequate assessments, which could affect the safe use of buildings facilities.


Sign in / Sign up

Export Citation Format

Share Document