Evaluation of Aging Performance of Thermal Gel Subjected to Laser Flash Tests

Author(s):  
Yimin Yao ◽  
Yonglun Xu ◽  
Xue Bai ◽  
Yunsong Pang ◽  
Linlin Ren ◽  
...  
2002 ◽  
Vol 76 (5) ◽  
pp. 480 ◽  
Author(s):  
Xavier Damoiseau ◽  
Francis Tfibel ◽  
Maryse Hoebeke ◽  
Marie-Pierre Fontaine-Aupart

2000 ◽  
Vol 72 (4) ◽  
pp. 451 ◽  
Author(s):  
M. Bazin ◽  
F. Bosca ◽  
M. L. Marin ◽  
M. A. Miranda ◽  
L. K. Patterson ◽  
...  

1999 ◽  
Vol 70 (3) ◽  
pp. 292
Author(s):  
Ann Cantrell ◽  
David J. McGarvey ◽  
Louise Mulroy ◽  
T. George Truscott

2001 ◽  
Vol 66 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Horst Hennig ◽  
Athanasios Kokorakis ◽  
Stefan Fränzle ◽  
Cornelia Damm ◽  
Franz W. Müller ◽  
...  

Adsorbates of [Fe(CN)5SCN]3- complex ions on semiconducting Pb(SCN)2 surfaces were subject to photoelectromotive force (PEMF) investigations. Laser flash excitation of the adsorbates at 560 nm yields a weak PEMF signal due to spectral sensitization of the semiconductor Pb(SCN)2, not absorbing in the visible region. PEMF signals observed with laser flash excitation at 337 nm are explained by hole trapping accompanied with photoinduced redox reactions of the complex, when the number of flashes is increased.


2020 ◽  
pp. 089270572096564
Author(s):  
Xiao Wang ◽  
Hui Lu ◽  
Jun Chen

In this work, ultra-high molecular weight polyethylene (UHMWPE)/natural flake graphite (NG) polymer composites with the extraordinary high thermal conductivity were prepared by a facile mixed-heating powder method. Morphology observation and X-ray diffraction (XRD) tests revealed that the NG flakes could be more tightly coated on the surface of UHMWPE granules by mixed-heating process and align horizontally (perpendicular to the hot compression direction of composites). Laser flash thermal analyzer (LFA) demonstrated that the thermal conductivity (TC) of composites with 21.6 vol% of NG reached 19.87 W/(m·K) and 10.67 W/(m·K) in the in-plane and through-plane direction, respectively. Application experiment further demonstrated that UHMWPE/NG composites had strong capability to dissipate the heat as heat spreader. The obtained results provided a valuable basis for fabricating high thermal conductive composites which can act as advanced thermal management materials.


Wear ◽  
2021 ◽  
pp. 203832
Author(s):  
Shifan Li ◽  
Conglin Dong ◽  
Chengqing Yuan ◽  
Shutian Liu ◽  
Xiuqin Bai

Sign in / Sign up

Export Citation Format

Share Document