flash method
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 59)

H-INDEX

28
(FIVE YEARS 2)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 368
Author(s):  
Karol Sztekler ◽  
Agata Mlonka-Mędrala ◽  
Nezar H. Khdary ◽  
Wojciech Kalawa ◽  
Wojciech Nowak ◽  
...  

Due to a high risk of power outages, a heat-driven adsorption chillers are gaining the attention. To increase the efficiency of the chiller, new adsorbents must be produced and examined. In this study, four newly developed silica–based porous materials were tested and compared with silica gel, an adsorber commonly paired with water. Extended sorption tests using mercury intrusion porosimetry, gas adsorption, and dynamic vapor sorption were performed. The morphology of the samples was determined using a scanning electron microscope. The thermal properties were defined using simultaneous thermal analysis and a laser flash method. Metal organic silica (MOS) nanocomposites analysed in this study had thermal properties similar to those of commonly used silica gel. MOS samples have a thermal diffusivity coefficient in the range of 0.17–0.25 mm2/s, whereas silica gel of about 0.2 mm2/s. The highest water adsorption capacity was measured for AFSMo-Cu and equal to 33–35%. For narrow porous silica gel mass uptake was equal about 25%. In the case of water adsorption, it was observed that the pore size of the sorbent is essential, and adsorbents with pore sizes higher than 5 nm, are most recommended in working pairs with water.


Author(s):  
Е.С. Макарова ◽  
А.В. Асач ◽  
И.Л. Тхоржевский ◽  
В.Е. Фомин ◽  
А.В. Новотельнова ◽  
...  

The estimation of the deviation in the measurements of thermal conductivity by the laser flash method for materials with different thermal conductivity coefficients, arising due to the presence of a graphite coating on the sample and the small thickness of the sample, is carried out. A computer model of the method was created in the Comsol Multiphysics software environment. For bulk samples with a graphite coating thickness of 20 μm, the deviation is 5.5 %. The thickness of bulk samples does not affect the measurement results. For materials with low thermal conductivity, a sharp increase in the deviation is observed, reaching 60%. For thermally conductive materials, the deviation is 16-18%. For thin samples less than 10 μm thick, the thickness of the graphite coating does not affect the measurement results. The decisive factor is the duration of the laser pulse.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 46
Author(s):  
Dennis Höfflin ◽  
Maximilian Rosilius ◽  
Philipp Seitz ◽  
Andreas Schiffler ◽  
Jürgen Hartmann

Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4 %. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012145
Author(s):  
A Sh Agazhanov ◽  
D A Samoshkin ◽  
S V Stankus

Abstract In the present work, the thermal diffusivity of the SDP-1 grade nickel alloy was investigated in the wide temperature range of 300-1476 K. The SDP-1 alloy (Ni-Co-Cr-Al-Y) is the heat-resistant coating for blades of gas turbine plants, providing protection against sulfide-oxide corrosion in the temperature range of 1070-1220 K. The measurements were performed by laser flash method using LFA-427 apparatus. The estimated errors of the obtained data were 2-5% depending on temperature. The thermal diffusivity approximation equations and a table of reference values for various scientific and practical applications were obtained.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012052
Author(s):  
A Turabi ◽  
B P Zhilkin ◽  
L V Zhukova ◽  
A S Shmygalev ◽  
A V Rudenko ◽  
...  

Abstract The aim of the study is to measure the thermal conductivity of silver halide light guides based on crystals of the AgCl-AgBr system used in PSD production technologies. The conductivity temperature coefficient of the samples under study were determined by the laser flash method using the LFA 467 (Hyper Flash) installation. We studied mono- and polycrystalline samples of solid solutions with the composition AgCl0,25AgBr0,75 in the temperature range 298–523 K. The thermal conductivity of the investigated materials was then calculated using literature data on density and heat capacity. The thermal conductivity coefficient ranges from 0.80±0,04 to 0.53±0,03 (W/mK), depending on the microstructure of the sample.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012101
Author(s):  
A Sh Agazhanov ◽  
D A Samoshkin ◽  
Yu M Kozlovskii ◽  
S V Stankus

Abstract The thermal diffusivity (a), the thermal coefficient of linear expansion (α), the isobaric heat capacity (cp ) and the fusion enthalpy (ΔH) of aluminum-magnesium alloy AMg3 were investigated by laser flash method, dilatometric method and method of differential scanning calorimetry in the temperature range of 300–773…1000 K. The thermal conductivity (λ) has been calculated from the measurement results. The estimated errors of the obtained data were 2–5%, 3–5%, 2–3% and (1.5–2.0)⋅10-7 K-1 for a, λ, cp and α, respectively. Approximation equations and a table of reference values for the temperature dependence of the studied properties have been obtained.


AIP Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 105009
Author(s):  
M. M. Groz ◽  
A. Sommier ◽  
E. Abisset-Chavanne ◽  
J. C. Batsale ◽  
C. Pradere

2021 ◽  
Vol 39 (4) ◽  
pp. 402-408
Author(s):  
Da-In Lim ◽  
So-Jeong Lee ◽  
Seung-Boo Jung ◽  
Jun-Ki Kim

Epoxy adhesives, particularly for non-conductive pastes, are used in 3D chip-stack flip-chip packages to reinforce the mechanical strength of joints. Although the thickness of the adhesive layer is relatively small, its thermal conductivity is known to have a major effect on the heat dissipation behavior of chipstack packages. Because conventional thermal conductivity measurement methods such as the laser flash method are based on the bulk specimens having thicknesses greater than several mm, they are limited in their ability to measure the thermal conductivity of thin adhesive layers between silicon dies. In this study, a modified guarded hot-plate method is proposed using standard joint layer samples of known thermal conductivity, and the measurement results are compared with those of the laser flash method. Results showed that, based on a constant heat flux from heat source to heat sink, the temperature difference at both sides of the joint layers was proportional to the thermal resistivity of the joint layer materials. The thermal conductivity of the under-test joint layer could therefore be determined from the thermal conductivity spectrum of the known samples using a graphical method. Although the measured values by the modified guarded hot-plate method were slightly higher than those derived from the laser flash method due to the thickness effect, it was concluded that the modified guarded hot-plate method could be a practical method in measuring the thermal conductivity of thin adhesive joint layers.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4627
Author(s):  
Inmaculada Cañadas ◽  
Victor M. Candelario ◽  
Giulia De Aloysio ◽  
Jesús Fernández ◽  
Luca Laghi ◽  
...  

Porous silicon carbide is a promising material for ceramic receivers in next-generation concentrated solar power receivers. To investigate its tolerance to thermal shock, accelerated ageing of large coupons (50 × 50 × 5 mm) was conducted in a solar furnace to investigate the effects of thermal cycling up to 1000 °C, with gradients of up to 22 °C/mm. Non-destructive characterization by computed X-ray tomography and ultrasonic inspection could detect cracking from thermal stresses, and this informed the preparation of valid specimens for thermophysical characterization. The effect of thermal ageing on transient thermal properties, as a function of temperature, was investigated by using the light-flash method. The thermophysical properties were affected by increasing the severity of the ageing conditions; thermal diffusivity decreased by up to 10% and specific heat by up to 5%.


Sign in / Sign up

Export Citation Format

Share Document