Demographic Progress Analysis of Census Data Using Data Mining

Author(s):  
Manan Chawda ◽  
Rutuja Rane ◽  
Srikanth Giri
Keyword(s):  
1993 ◽  
Vol 32 (01) ◽  
pp. 79-81 ◽  
Author(s):  
P. Millard ◽  
S. McClean

Abstract:The flow of patients through geriatric hospitals has been previously described in terms of acute and long-stay states where the bed occupancy at a census point is modelled by a mixed exponential model. Using data for sixteen years the model was fitted to successive annual census points, in order to provide a description of temporal trends. While the number of acute patients has remained fairly stable during the period, the model shows that there has been a decrease in the number of long-stay patients. Mean lengths of stay in our geriatric hospital before death or discharge have decreased during the study period for both acute and long-stay patients.Using these fits of the mixed exponential model to census data, a method is provided for predicting future turnover of patients. These predictions are reasonably good, except when the turnover patterns go through a period of flux in which assumption of stability no longer holds. Overall, a methodology is presented which relates census analysis to the behaviour of admission cohorts, thus producing a means of predicting future behaviour of patients and identifying where there is a change in patterns.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


2015 ◽  
Vol 1 (4) ◽  
pp. 270
Author(s):  
Muhammad Syukri Mustafa ◽  
I. Wayan Simpen

Penelitian ini dimaksudkan untuk melakukan prediksi terhadap kemungkian mahasiswa baru dapat menyelesaikan studi tepat waktu dengan menggunakan analisis data mining untuk menggali tumpukan histori data dengan menggunakan algoritma K-Nearest Neighbor (KNN). Aplikasi yang dihasilkan pada penelitian ini akan menggunakan berbagai atribut yang klasifikasikan dalam suatu data mining antara lain nilai ujian nasional (UN), asal sekolah/ daerah, jenis kelamin, pekerjaan dan penghasilan orang tua, jumlah bersaudara, dan lain-lain sehingga dengan menerapkan analysis KNN dapat dilakukan suatu prediksi berdasarkan kedekatan histori data yang ada dengan data yang baru, apakah mahasiswa tersebut berpeluang untuk menyelesaikan studi tepat waktu atau tidak. Dari hasil pengujian dengan menerapkan algoritma KNN dan menggunakan data sampel alumni tahun wisuda 2004 s.d. 2010 untuk kasus lama dan data alumni tahun wisuda 2011 untuk kasus baru diperoleh tingkat akurasi sebesar 83,36%.This research is intended to predict the possibility of new students time to complete studies using data mining analysis to explore the history stack data using K-Nearest Neighbor algorithm (KNN). Applications generated in this study will use a variety of attributes in a data mining classified among other Ujian Nasional scores (UN), the origin of the school / area, gender, occupation and income of parents, number of siblings, and others that by applying the analysis KNN can do a prediction based on historical proximity of existing data with new data, whether the student is likely to complete the study on time or not. From the test results by applying the KNN algorithm and uses sample data alumnus graduation year 2004 s.d 2010 for the case of a long and alumni data graduation year 2011 for new cases obtained accuracy rate of 83.36%.


2018 ◽  
Vol 6 (9) ◽  
pp. 572-574
Author(s):  
Gyaneshwar Mahto ◽  
Umesh Prasad ◽  
Rajiv Kumar Dwivedi
Keyword(s):  

2019 ◽  
Vol 7 (3) ◽  
pp. 749-753
Author(s):  
Suhasini Vijaykumar ◽  
Manjiri Moghe

Sign in / Sign up

Export Citation Format

Share Document