Constant-amplitude fatigue crack growth sequence regression on an aircraft lap joint using a 1-D convolutional network

Author(s):  
Muhammad Ihsan Mas ◽  
Mohamad Ivan Fanany ◽  
Timotius Devin ◽  
Lintang A. Sutawika
2021 ◽  
Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract The effect of a single overload on the fatigue crack growth rate was investigated for Type 316 stainless steel. Fatigue crack growth tests were conducted by controlling strain and load. Tensile and compressive overloads were applied during constant amplitude cycling. The overload ratio, which was defined as the ratio of overload size to baseline constant amplitude, was also changed. The constant amplitude tests were conducted at the strain or the stress ratio of −1.0 which was defined as the ratio of the minimum value to the maximum value. The crack opening point was obtained by the unloading elastic compliance method. The crack growth rate increased after the single compressive overload. The accelerating rate increased with the overload ratio. In contrast, not only the acceleration but also the retardation of the crack growth rate was observed for some tensile overload cases. The crack growth rate increased for relatively small tensile overload cases and decreased for relatively large tensile overload cases. The change in the crack opening level was examined. The crack growth rates after tensile and compressive single overloads correlated with the effective strain and stress intensity factor ranges both for load and strain controlling modes.


2002 ◽  
Vol 124 (4) ◽  
pp. 385-390
Author(s):  
Ki-Ju Kang ◽  
Seon-Ho Choi ◽  
Tae-Sung Bae

Fatigue tests were performed using single lap-joint specimens to obtain near-threshold fatigue crack growth data of solder joint under mode-II load. Attention was focused on the effect of high temperature aging and microstructures separately from the intermetallics. As a result, it was shown that the long cast time yielded the intermetallics and microstructures of the solder invariable regardless of aging condition. The granular micro-structure of the air-cooled specimens was shown to be inferior to the laminated micro-structure of the furnace-cooled specimens. Also, transition of fatigue crack behavior with ΔJ and the procedure of fatigue crack propagation from the pre-crack tip were discussed.


2006 ◽  
Vol 129 (4) ◽  
pp. 594-602 ◽  
Author(s):  
L. Liu ◽  
J. W. Holmes

Details are provided for an experimental approach to study the tensile fatigue crack growth behavior of very thin metallic foils. The technique utilizes a center-notched specimen and a hemispherical bearing alignment system to minimize bending strains. To illustrate the technique, the constant amplitude fatigue crack growth behavior of a Ni-base superalloy foil was studied at temperatures from 20°C to 760°C. The constant amplitude fatigue tests were performed at a frequency of 2Hz and stress ratio of 0.2. The crack growth rate versus stress intensity range data followed a Paris relation with a stress intensity range exponent m between 5 and 6; this exponent is significantly higher than what is commonly observed for thicker materials and indicates very rapid fatigue crack propagation rates can occur in thin metallic foils.


Sign in / Sign up

Export Citation Format

Share Document