scholarly journals A DYNAMICAL COEFFICIENT MECHANICS MODEL FOR FATIGUE CRACK GROWTH UNDER CONSTANT AMPLITUDE LOADING

Author(s):  
Z. F. Liu ◽  
L. X. Gu ◽  
Z. Y. Xu
Author(s):  
Steven J. Polasik ◽  
Carl E. Jaske

Pipeline operators must rely on fatigue crack growth models to evaluate the effects of operating pressure acting on flaws within the longitudinal seam to set re-assessment intervals. In most cases, many of the critical parameters in these models are unknown and must be assumed. As such, estimated remaining lives can be overly conservative, potentially leading to unrealistic and short reassessment intervals. This paper describes the fatigue crack growth methodology utilized by Det Norske Veritas (USA), Inc. (DNV), which is based on established fracture mechanics principles. DNV uses the fracture mechanics model in CorLAS™ to calculate stress intensity factors using the elastic portion of the J-integral for either an elliptically or rectangularly shaped surface crack profile. Various correction factors are used to account for key variables, such as strain hardening rate and bulging. The validity of the stress intensity factor calculations utilized and the effect of modifying some key parameters are discussed and demonstrated against available data from the published literature.


2021 ◽  
Author(s):  
Koji Miyoshi ◽  
Masayuki Kamaya

Abstract The effect of a single overload on the fatigue crack growth rate was investigated for Type 316 stainless steel. Fatigue crack growth tests were conducted by controlling strain and load. Tensile and compressive overloads were applied during constant amplitude cycling. The overload ratio, which was defined as the ratio of overload size to baseline constant amplitude, was also changed. The constant amplitude tests were conducted at the strain or the stress ratio of −1.0 which was defined as the ratio of the minimum value to the maximum value. The crack opening point was obtained by the unloading elastic compliance method. The crack growth rate increased after the single compressive overload. The accelerating rate increased with the overload ratio. In contrast, not only the acceleration but also the retardation of the crack growth rate was observed for some tensile overload cases. The crack growth rate increased for relatively small tensile overload cases and decreased for relatively large tensile overload cases. The change in the crack opening level was examined. The crack growth rates after tensile and compressive single overloads correlated with the effective strain and stress intensity factor ranges both for load and strain controlling modes.


2006 ◽  
Vol 129 (4) ◽  
pp. 594-602 ◽  
Author(s):  
L. Liu ◽  
J. W. Holmes

Details are provided for an experimental approach to study the tensile fatigue crack growth behavior of very thin metallic foils. The technique utilizes a center-notched specimen and a hemispherical bearing alignment system to minimize bending strains. To illustrate the technique, the constant amplitude fatigue crack growth behavior of a Ni-base superalloy foil was studied at temperatures from 20°C to 760°C. The constant amplitude fatigue tests were performed at a frequency of 2Hz and stress ratio of 0.2. The crack growth rate versus stress intensity range data followed a Paris relation with a stress intensity range exponent m between 5 and 6; this exponent is significantly higher than what is commonly observed for thicker materials and indicates very rapid fatigue crack propagation rates can occur in thin metallic foils.


1972 ◽  
Vol 94 (1) ◽  
pp. 243-247 ◽  
Author(s):  
H. Saal

A fracture mechanics model is proposed to describe fatigue crack propagation in notched specimens. This model accounts for residual stresses which are present at the notch root after unloading from maximum compressive load. This is of particular interest for specimens subjected to compressive mean load. According to the model, cracks will stop growing at the boundary of the plastically deformed zone if the specimen is subjected to compressive load only. Validity of the model was verified with notched specimens of mild steel.


Sign in / Sign up

Export Citation Format

Share Document