specimen geometry
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Alexandre A. Cavalcante

Abstract: Additive manufacturing (AM) by FDM (Fused Deposition Modeling) has been increasingly adopted due to the low cost of 3D printers as an option capable of producing parts with complex geometries. Since the FDM process is a layer-by-layer manufacturing method, the characterization of the behavior of parts manufactured by this technology, especially with regard to anisotropic mechanical properties, has led to many works relating printing parameters with tensile strength. However, the use of specimens with the conventional flat "dog bone" and cylindrical geometries specified in the ASTM-638 standards do not perfectly suit the special characteristics of parts produced by FDM, since these standards were created for solid and isotropic materials. A new geometry for specimens printed in FDM to study anisotropy transverse to layer deposition is suggested in this work. Problems such as slippage and crushing in the grips of the test machines due to the fragility of the bound between the beds, as well as the appearance of lateral forces that distort the results due to misalignment of the tensile load, twists and curvature of the specimens, normally observed in the Strain measurements by extensometers, are suppressed with the adoption of the new geometry presented in this work. Keywords: Fused Deposition Modeling, Additive Manufacturing, Mechanical Strength, Tensile Testing, Specimen Geometry


2021 ◽  
Author(s):  
Marcel Adam ◽  
Sebastian Schmitz ◽  
Suhas Suresh ◽  
Dirk Kulawinski ◽  
Alexander Erbe ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3939
Author(s):  
Rajnish Kumar ◽  
Lars P. Mikkelsen ◽  
Hans Lilholt ◽  
Bo Madsen

This paper presents an experimental method for tensile testing of unidirectional carbon fibre composites. It uses a novel combination of a new specimen geometry, protective layer, and a robust data analysis method. The experiments were designed to test and analyze unprotected (with conventional end-tabs) and protected (with continuous end-tabs) carbon fibre composite specimens with three different specimen geometries (straight-sided, butterfly, and X-butterfly). Initial stiffness and strain to failure were determined from second-order polynomial fitted stress–strain curves. A good agreement between back-calculated and measured stress–strain curves is found, on both composite and fibre level. For unprotected carbon composites, the effect of changing specimen geometry from straight-sided to X-butterfly was an increase in strain to failure from 1.31 to 1.44%. The effect of protection on X-butterfly specimens was an increase in strain to failure from 1.44 to 1.53%. For protected X-butterfly specimens, the combined effect of geometry and protection led to a significant improvement in strain to failure of 17% compared to unprotected straight-sided specimens. The observed increasing trend in the measured strain to failure, by changing specimen geometry and protection, suggests that the actual strain to failure of unidirectional carbon composites is getting closer to be realized.


Author(s):  
Boxiu Zhang ◽  
Matthew Marshall ◽  
Roger Lewis

Labyrinth seal systems are used in aeroengines to seal the clearance, the understanding of the wear mechanism of labyrinth seal system is necessary to achieve better sealing performance. In this work a series of tests are conducted on a high-speed test rig capable of fin tip speeds of 100 m/s. With force and temperature measurements recorded in each case, the influence of specimen geometry is investigated. Surface examination and debris analysis is also performed using microscopy post-test. The wear mechanism was found to be influenced by fin geometry. A discrete fin was observed to trigger a more efficient material removal mechanism at both incursion conditions. Where the fin segment and ring-shaped fin leading to increased temperatures and material smearing. The heat dissipate role of fin was also observed during test where longer contact time of fin and abradable gives better heat removal performance.


2021 ◽  
Author(s):  
Yan-Hui Zhang ◽  
Matthew Doré

Abstract Most engineering components are subjected to cyclic loading in service and design against fatigue failure is often a key consideration in design. For fracture mechanics fatigue analysis, fatigue crack growth (FCG) tests are often required to determine the relevant Paris power law parameters for the material under the environment concerned. Standards allow use of different specimen geometries for FCG tests such as compact tension (CT), centre crack tension (CCT), single edge notch bend (SENB) and single edge notch tension (SENT). However, when selecting specimen geometry for fatigue crack growth rate (FCGR) testing, there is often doubt about which specimen geometry is more appropriate and whether they give similar FCGR. There is limited work to compare the FCGR between different specimen geometries. This paper first briefly introduces the guidance on FCG test specimen geometries in standards and compares the advantages and disadvantages of these specimen geometries. A comprehensive literature review is carried out to compare the FCGR data between different specimen geometries. FCGR tests are conducted on SENB, SENT and CCT specimens of C-Mn steel to investigate any effects of specimen symmetry/asymmetry and crack constraint on FCGR. Based on the literature review and test data, it is concluded that FCGR is independent of the specimen geometries examined.


Sign in / Sign up

Export Citation Format

Share Document