Vision-based sign language recognition system: A Comprehensive Review

Author(s):  
Sakshi Sharma ◽  
Sukhwinder Singh
2019 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
MALHOTRA POOJA ◽  
K. MANIAR CHIRAG ◽  
V. SANKPAL NIKHIL ◽  
R. THAKKAR HARDIK ◽  
◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Vasu Mehra ◽  
Dhiraj Pandey ◽  
Aayush Rastogi ◽  
Aditya Singh ◽  
Harsh Preet Singh

Background:: People suffering from hearing and speaking disabilities have a few ways of communicating with other people. One of these is to communicate through the use of sign language. Objective:: Developing a system for sign language recognition becomes essential for deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. Methods:: The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of human computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models which have been trained by using Tensor Flow and Keras library. Result:: The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV because of sharply defined image provided to the model for classification. The results of testing indicate reliable recognition systems with high accuracy that includes most of the essential and necessary features for any deaf and dumb person in his/her day to day tasks. Conclusion:: It’s the need of current technological advances to develop reliable solutions which can be deployed to assist deaf and dumb people to adjust to normal life. Instead of focusing on a standalone technology, a plethora of them have been introduced in this proposed work. Proposed Sign Recognition System is based on feature extraction and classification. The trained model helps in identification of different gestures.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 59612-59627
Author(s):  
Mohamed A. Bencherif ◽  
Mohammed Algabri ◽  
Mohamed A. Mekhtiche ◽  
Mohammed Faisal ◽  
Mansour Alsulaiman ◽  
...  

Author(s):  
Zhibo Wang ◽  
Tengda Zhao ◽  
Jinxin Ma ◽  
Hongkai Chen ◽  
Kaixin Liu ◽  
...  

Prospectiva ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 41-48
Author(s):  
Betsy Villa ◽  
Valeria Valencia ◽  
Julie Berrio

El lenguaje de señas es el autóctono, utilizado por las personas sordas para comunicarse. Se compone de movimientos y expresiones realizadas a través de diferentes partes del cuerpo. En Colombia, hay gran ausencia de tecnologías encaminadas al aprendizaje e interpretación de éste; por ende, es un compromiso social, llevar a cabo iniciativas que promuevan la mejora de la calidad de vida de este grupo social del país, el cual está representado por una minoría considerable. En este artículo, se muestra el proceso de diseño e implementación de un sistema de reconocimiento de gestos no móviles mediante el entorno de Matlab y el método SIFT; a través del cual se visualiza la imagen de la letra adquirida, junto con la traducción de la misma en el lenguaje de señas colombiano, aplicando identificación de puntos claves y comparación con imágenes almacenadas en base de datos. La herramienta realiza el reconocimiento de las 20 letras no móviles de este conjunto, implementando una interfaz gráfica en Matlab para una mejor visualización, fácil acceso al sistema y uso por parte del usuario. Se comprueba una mejor respuesta del sistema mediante la utilización de un elemento estandarizado de la imagen, en este caso, un guante quirúrgico, y se propone la mejora de la herramienta aplicando métodos de redes neuronales para que posteriormente pueda ser desarrollada de forma online; generando un mayor impacto para las necesidades actuales de la población colombiana.


Sign in / Sign up

Export Citation Format

Share Document