A Reference Detection Algorithm for Series Active Power Filters, Aimed at Current Harmonics and Reactive Power Compensation

Author(s):  
Ahad Kazami ◽  
Seyed Alireza Davari
2018 ◽  
Vol 65 (3) ◽  
pp. 2608-2617 ◽  
Author(s):  
Silvia Costa Ferreira ◽  
Robson Bauwlez Gonzatti ◽  
Rondineli Rodrigues Pereira ◽  
Carlos Henrique da Silva ◽  
L. E. Borges da Silva ◽  
...  

2016 ◽  
Vol 6 (5) ◽  
pp. 1133-1138 ◽  
Author(s):  
T. Demirdelen ◽  
R. I. Kayaalp ◽  
M. Tumay

In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF) for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.


Author(s):  
Goggi Kirshna Sanyasi Rao and P.Murari

This paper shows the method of improving the power quality using shunt active power filter. In order to protect the supply system from current harmonics, we have to use the active power filters. These are used to compensate the reactive power compensation, but the performance of active power filters are based on various control strategies. This paper presents the complete examination to estimate the working of SHAF for generating the current references under steady and transient for balanced, unbalanced and non-sinusoidal conditions by using PI controller. The P-Q theory and synchronous reference frame theory, which are widely used in SHAF. The most validate results obtained by simulation with matlab/simulink software are carried out with PI controller for P-Q control theory for various voltage conditions like balanced, unbalanced and non-sinusoidal conditions and dynamic load changes.


Sign in / Sign up

Export Citation Format

Share Document