Dynamic sliding window method for physical activity recognition using a single tri-axial accelerometer

Author(s):  
M. H. M. Noor ◽  
Z. Salcic ◽  
K. I-K. Wang
2021 ◽  
Vol 11 (6) ◽  
pp. 2633
Author(s):  
Nora Alhammad ◽  
Hmood AlDossari

Data segmentation is an essential process in activity recognition when using machine learning techniques. Previous studies on physical activity recognition have mostly relied on the sliding window approach for segmentation. However, choosing a fixed window size for multiple activities with different durations may affect recognition accuracy, especially when the activities belong to the same category (i.e., dynamic or static). This paper presents and verifies a new method for dynamic segmentation of physical activities performed during the rehabilitation of individuals with spinal cord injuries. To adaptively segment the raw data, signal characteristics are analyzed to determine the suitable type of boundaries. Then, the algorithm identifies the time boundaries to represent the start- and endpoints of each activity. To verify the method and build a predictive model, an experiment was conducted in which data were collected using a single wrist-worn accelerometer sensor. The experimental results were compared with the sliding window approach, indicating that the proposed method outperformed the sliding window approach in terms of overall accuracy, which exceeded 5%, as well as model robustness. The results also demonstrated efficient physical activity segmentation using the proposed method, resulting in high classification performance for all activities considered.


Author(s):  
Jyoti Malik ◽  
G. Sainarayanan ◽  
Ratna Dahiya

Authentication time is the main and important part of the authentication system. Normally the response time should be fast but as the number of persons in the database increases, there is probability of more response time taken for authentication. The need of fast authentication system arises so that authentication time (matching time) is very less. This paper proposes a sliding window approach to make fast authentication system. The highlight of sliding window method is constant matching time, fast and can match translated images also. Several palmprint matching methods like match by correlation etc. are dependent upon the number of corners detected and so is the matching time. In sliding window method, matching time is constant as the numbers of matching operations are limited and the matching time is independent of the number of corners detected. The palmprint corner features extracted using two approaches Phase Congruency Corner Detector and Harris Corner Detector are binarized so that only useful information (features) is matched. The two approaches of Phase Congruency Corner Detector and Harris Corner Detector, when matched with hamming distance using sliding window can achieve recognition rate of 97.7% and 97.5% respectively.


Sign in / Sign up

Export Citation Format

Share Document