machine tool structure
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2260
Author(s):  
Chunhui Li ◽  
Zhiqiang Song ◽  
Xianghua Huang ◽  
Hui Zhao ◽  
Xuchu Jiang ◽  
...  

Dynamic parameters are the intermediate information of the entirety of machine dynamics. The differences between components have not been combined with the structural vibration in the cutting process, so it is difficult to directly represent the dynamic characteristics of the whole machine related to spatial position. This paper presents a method to identify sensitive parts according to the dynamic stiffness-sensitivity algorithm, which represents the dynamic characteristics of the whole machine tool. In this study, two experiments were carried out, the simulation verification experiment (dynamic experiment with variable stiffness) and modal analysis experiment (vibration test of five-axis gantry milling machine). The key modes of sensitive parts obtained by this method can represent the position-related dynamic characteristics of the whole machine. The characteristic obtained is that the inherent properties of machine-tool structure are independent of excitation. The method proposed in this paper can accurately represent the dynamic characteristics of the whole machine tool.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4512-4518
Author(s):  
M. Mares ◽  
◽  
O. Horejs ◽  

Achieving high workpiece accuracy is a long-term goal of machine tool designers. There are many causes of workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising strategy for reducing thermal errors without increasing machine tool cost. A modelling approach using thermal transfer functions (a dynamic method with a physical basis) embodies the potential to deal with this issue. The method does not require interventions into the machine tool structure, uses a minimum of additional gauges and its modelling and calculation speed is suitable for real-time applications with fine results with up to 80% thermal error reduction. Advanced machine tool thermal error compensation models have been successfully applied on various kinds of single-purpose machines (milling, turning, floor-type, etc.) and implemented directly into their control systems. This research reflects modern trends in machine tool usage and as such is focused on the applicability of the modelling approach to describe specialised vertical turning lathe versatility. The specialised vertical turning lathe is adequately capable of carrying out turning and milling operations. Calibration of the reliable compensation model is a real challenge. The applicability of the approach during immediate switching between turning and milling operations is discussed in more detail.


2021 ◽  
Author(s):  
Meng Duan ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Zhangjie Li ◽  
Yongquan Zhang ◽  
...  

Abstract To establish the dynamic model of machine tool structure is an important means to assess the performance of the machine tool structure during the cutting process. It’s necessary to study the dynamics of the machine tools in different configurations for the sake of analyzing the dynamic behavior of the machine tools in the entire workspace. In this paper, a robust approach is presented to build an efficient and reliable dynamic model to evaluate the position-dependent dynamics of the twin ball screw (TBS) feed system. First, the TBS feed system is divided into several components and a finite element (FE) model is built for each component. Second, the Craig-Bampton method is proposed to reduce the order of the substructures. Third, a multipoint constraints (MPCs) method was introduced to model the mechanical joints substructures of the TBS system, and the spring-damper element (SDE) is employed to connect the condensation nodes. Finally, a series experimental tests and full order FE analysis are conducted on the self-designed TBS worktable in the four positions to validate the effectiveness of the proposed dynamic model. The results show that the proposed approach evaluates accurately the position-dependent behavior of the TBS system.


2021 ◽  
Vol 346 ◽  
pp. 01004
Author(s):  
L. Ya. Gilovoi ◽  
A. V. Isaev ◽  
A. V. Krutov ◽  
V. V. Molodtsov

Due to high performance characteristics of the modular rolling guides, they are widely used in the contemporary CNC machine designs by major manufacturers. The wrong choice of the guide characteristics can result in excessive cost of guides or maintenance, as well as insufficient rigidity of the machine. Various methods of modular rolling guides elastic properties studying and machine tool structure deformation analysis are known. Most of them are analytical solutions in which the cartridge body and the rail are considered non-deformable. The purpose of this study is to develop a hybrid numerical-analytical model based on the FEM and analytical solution. This approach makes it possible to take into account the joint deformation of bodies (cartridge body, rail, etc.) and contact deformation of the balls and raceways of the guides. The study was carried out in SolidWorks Simulation application. The simulation results correlate with the experimental data well. The displacements of the cartridge have lower values than the values obtained using the FEM model. To evaluate the significance of the model nonlinearity and the possibility of its linearization, a series of calculations of the gear hobbing machine structure elements were performed. The hybrid numerical-analytical model created improves the adequacy of the simulation results.


2020 ◽  
Vol 22 (4) ◽  
pp. 1287-1300
Author(s):  
A. Motallebia ◽  
A. Doniavi ◽  
Y. Sahebi

AbstractChatter is a self-excited vibration which depends on several parameters such as the dynamic characteristics of the machine tool structure, the material of the work piece, the material removal rate, and the geometry of tools. Chatter has an undesirable effect on dimensional accuracy, smoothness of the work piece surface, and the lifetime of tools and the machine tool. Thus, it is useful to understand this phenomenon in order to improve the economic aspect of machining. In the present article, first the theoretical study and mathematical modeling of chatter in the cutting process were carried out, and then by performing modal testing on a milling machine and drawing chatter stability diagrams, we determined the stability regions of the machine tool operation and recognized that witch parameter has a most important effect on chatter.


Author(s):  
S. Nallusamy ◽  
K. Sujatha ◽  
K. Rajan ◽  
K.R. Vijaya Kumar

In high speed machining, performance is generally influenced by the dynamic behaviour of the machine tool structures. The machine tool structure is required to be rigid in order to remove the undesirable vibration and to improve the work piece quality. The most conventional material used in machine tool structure is cast iron which has both stiffness and dynamic characteristics to perform at varying speeds. The objective of this work is to improve damping capacity of vertical machining centre column. The damping capacity of column can be increased further by using passive damping method of ball packing. Damping capacity is a crucial factor which makes the dissipation of vibration happens at faster rate. As compared with cast iron established studies shows that epoxy granite a composite material improves damping capacity. Epoxy granite though could be a good choice for improving the machine tool performance at high speeds but is poor in static stiffness compared to cast iron. In this investigation it was observed that, the static stiffness of epoxy granite composite vertical machining centre column could be increased by using steel reinforcements. The final results reveal that, steel balls with epoxy granite provide faster dissipation time of 15ms at 70% packing ratio as compared to glass balls that showed dissipation time of 35ms. Also it was seen that, the steel balls offer the better damping capacity at optimum packing ratio of 50% mainly due to its specific gravity and mass of the balls.


2020 ◽  
Vol 14 (3) ◽  
pp. 475-483
Author(s):  
Martin Mareš ◽  
◽  
Otakar Horejš ◽  
Jan Hornych

Achieving high workpiece accuracy is a long-term goal of machine tool designers. Many causes can explain workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising thermal error reduction strategy that does not increase machine tool costs. A modeling approach using transfer functions (i.e., a dynamic method with a physical basis) has the potential to deal with this issue. The method does not require any intervention into the machine tool structure, uses a minimum of additional gauges, and its modeling and calculation speed are suitable for real-time applications that result in as much as 80% thermal error reduction. Compensation models for machine tool thermal errors using transfer functions have been successfully applied to various kinds of single-purpose machines (milling, turning, floor-type, etc.) and have been implemented directly into their control systems. The aim of this research is to describe modern trends in machine tool usage and focuses on the applicability of the modeling approach to describe the multi-functionality of a turning-milling center. A turning-milling center is capable of adequately handling turning, milling, and boring operations. Calibrating a reliable compensation model is a real challenge. Options for reducing modeling and calibration time, an approach to include machine tool multi-functionality in the model structure, model transferability between different machines of the same type, and model verification out of the calibration range are discussed in greater detail.


Sign in / Sign up

Export Citation Format

Share Document