Harmonic composition of the rectified current in traction substations when using different rectifier circuits

Author(s):  
K. Kuznetsov ◽  
A. Zakirova
2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.


2021 ◽  
Vol 54 ◽  
pp. 346-354
Author(s):  
Alexander Murzintsev ◽  
Alexei Korolev ◽  
Ksenia Zhgun ◽  
Rashid Baembitov

Author(s):  
Conelia A. Bulucea ◽  
Doru A. Nicola ◽  
Nikos E. Mastorakis ◽  
Philippe Dondon ◽  
Carmen A. Bulucea

Author(s):  
Pratik P. Nachankar ◽  
Hiralal M. Suryawanshi ◽  
Pradyumn Chaturvedi ◽  
Dipesh D. Atkar ◽  
P. Vijay Vardhan Reddy
Keyword(s):  

2018 ◽  
Vol 180 ◽  
pp. 02011 ◽  
Author(s):  
Petru Valentin Radu ◽  
Adam Szeląg

The paper presents a Simulink model of a DC metro traction supply system with a stationary energy storage device (SESD). The simulation model consists of traction substations, a train model, and an energy storage device (ESD) with supercapacitors (SC). A new energy management strategy considering the line voltage and current, SC state of charge (SOC) and SC charging and discharging current is proposed. This method can improve the energy savings and manage the remaining energy. Simulation results provided in this paper justify the control method. The proposed model can be used with different ESD, such as batteries.


2018 ◽  
Vol 180 ◽  
pp. 02005 ◽  
Author(s):  
Włodzimierz Jefimowski ◽  
Anatolii Nikitenko

The paper presents the results of economic study of energy storage system (ESS) implemented in 3 kV DC power supply system. Two conceptions of ESS have been investigated: ESS with supercapacitor (SC) and hybrid ESS (HESS) with SC and LFP battery. The investigated locations of energy storage systems are considered among existing traction substations in two railway lines with different density of train operation. The considered aims of energy storage system implementation are decreasing of energy consumption by maximum regenerative energy utilization and reduction of peak 15- min power demand of traction substation. The paper presents a method of regenerative power estimation depending on the location of the considered ESS implementation point. Also the method of optimal location selection of ESS in terms of minimization of Simple Payback Time (SPBT) of investment is presented. Besides the influence of initial cost value as well as energy price on the SPBT value are investigated. The results are compared between two railway lines with different number of trains operating.


Sign in / Sign up

Export Citation Format

Share Document