Dependence of Current Harmonics of Greenhouse Irradiators on Supply Voltage

2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1374
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Monika Rerak ◽  
Maciej Skaza

This paper presents the skin effect impact on the active power losses in the sheathless single-core cables/wires supplying nonlinear loads. There are significant conductor losses when the current has a distorted waveform (e.g., the current supplying diode rectifiers). The authors present a new method for active power loss calculation. The obtained results have been compared to the IEC-60287-1-1:2006 + A1:2014 standard method and the method based on the Bessel function. For all methods, the active power loss results were convergent for small-cable cross-section areas. The proposed method gives smaller power loss values for these cable sizes than the IEC and Bessel function methods. For cable cross-section areas greater than 185 mm2, the obtained results were better than those for the other methods. There were also analyses of extra power losses for distorted currents compared to an ideal 50 Hz sine wave for all methods. The new method is based on the current penetration depth factor calculated for every considered current harmonics, which allows us to calculate the precise equivalent resistance for any cable size. This research is part of our work on a cable thermal analysis method that has been developed.


2014 ◽  
Vol 15 (2) ◽  
pp. 177-194 ◽  
Author(s):  
Anup Kumar Panda ◽  
Ranjeeta Patel

Abstract In this paper, shoot-through current elimination DC–AC converter circuit has been presented with the application of active power filter (APF). The intuitive analysis of the shoot-through in the conventional DC–AC converter has been reported first. Interleaved buck (IB) converter is adopted to eliminate the shoot-through current, thereby increasing the reliability of the interleaved buck–based active power filter (IB-APF). The 3-phase 4-wire IB-APF eliminates the current harmonics produced by the load just as a conventional one does and are innately immune to “shoot-through” phenomenon, with the elimination of special protection features required in conventional inverter circuits. A comparison has been made about the compensation capabilities of the IB-APF with the PI and fuzzy logic controller (FLC) used by id–iq control strategy under different supply voltage conditions. The id–iq control strategy used for extracting the three-phase reference current for IB-APF, evaluating their performance here in MATLAB/Simulink environment and also implemented using real-time digital simulator hardware (OPAL-RT hardware). The RTDS result verifies that the total harmonic distortion percentage of the source current can be reduced below 5% according to IEEE-519 standard recommendations on harmonic limits.


2011 ◽  
Vol 59 (4) ◽  
pp. 541-550 ◽  
Author(s):  
P. Mysiak ◽  
R. Strzelecki

A robust 18-pulse diode rectifier with coupled reactorsThe article presents the principle of operation and selected results of simulation and laboratory tests of the 18-pulse rectifier system with coupled reactors and small series active power filter. The presented system makes it possible to reduce, especially in distribution supply networks, undesired higher current harmonics. The 18-pulse nature of operation of the rectifier is reached using a set of coupled three-phase network reactors (CDT and CTR). The simultaneous use of the coupled reactors and the small active power filter provides opportunities for reduction of the supply current distortion, especially in case of voltage harmonic distortion and voltage unbalance.


2013 ◽  
Vol 853 ◽  
pp. 352-357
Author(s):  
Calin Chioreanu

Photovoltaic panels (PF), combined with lead-acid battery (AE), are increasingly used, to produce electricity. To work in maximum power points, between (PF) and (AE) is interposed a static converter (DC-DC), which is a harmonic pollution source. Within the paper there are calculated the power losses, due to current harmonics, of a photovoltaic system working at its maximum power. Photovoltaic system works at its maximum power, if in the electronic system there is permanently voltage control among solar battery terminals.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4164
Author(s):  
Tomasz Szczegielniak ◽  
Dariusz Kusiak ◽  
Paweł Jabłoński

The use of high voltage power cables in distribution and transmission networks is still increasing. As a result, the research on the electrical performance of cable lines is still up to date. In the paper, an analytical method of determining the power losses and the temperature distribution in the medium voltage cable was proposed. The main feature of the method is direct including the skin and proximity effects. Then the Joule law is used to express the power losses in the conductor and screen, and the Fourier-Kirchhoff equation is applied to find out the temperature distribution in the cable. The research was focused on a cable with isolated screen and return current in the screen taken into account. The proposed method was tested by using the commercial COMSOL software(5.6/COMSOL AB, Stockholm, Sweden) as well as by carrying out laboratory measurements. Furthermore, the results obtained via the proposed method were compared with those given in literature. The differences between the temperature values calculated by the analytical method, numerical computations and obtained experimentally do not exceed 10%. The proposed analytical method is suitable in prediction the temperature of the power cables with good accuracy.


2016 ◽  
Vol 10 (1) ◽  
pp. 205-219
Author(s):  
Qiu Hongbo ◽  
Dong Yu ◽  
Yang Cunxiang

Power rectifiers are very necessary in the wind power generation systems since they are the necessary channels that link the generator and power gird together. However, they have some effects on the permanent magnet wind generator due to their work on fast on-off transitions. Taking an 8kW 2000r/min wind-driven permanent magnet generator as an example, the system model and external circuit were established. Firstly, based on the field-circuit coupling calculation method, the voltage and current harmonics have been studied respectively when the generator was connected to rectifier loads and pure resistance loads, so did the total harmonic distortion. The mechanism of harmonic impacted by rectifiers was revealed. Secondly, combined the harmonic electromagnetic field theory, the stator core loss, armature winding copper loss and rotor eddy loss were analyzed when the generator connected different loads. Furthermore, according to the definition of nonlinear circuits PF, the numerical analysis method was adopted to calculate the power factor when the generator connected two loads respectively. The change mechanism of PF impacted by rectifiers has been revealed. In addition, the temperature field model has been established and the generator temperature was also analyzed. The temperature distributions were obtained when the wind generator was connected to different loads. Then, the relationship between losses and temperature was combined, the change rules of permanent magnet temperature by the eddy current loss were studied under different load. At last, it can prove that the rectifiers have influences on both electromagnetic field and temperature field through comparing the simulation results with experimental test data.


Author(s):  
F. P. Shkrabets

The increase in the capacity of cleaning and construction vehicles for highcapacity and energy-intensive mines calls for an increase in the  supply voltage of cleaning and tunneling combines, as well as  transport systems: from a voltage of 660 V switched to 1140 V, and  now to 3300 V. This allows improving technical and economic  indicators for clearing and access areas, as well as improving the reliability of local Power Supply Systems (PSS). However, this  trend prevents the supply of underground electric networks with a  voltage of 6 kV, in connection with which the problem arises of  increasing the voltage of supply networks. To date, it has become  possible to apply the 10 kV voltage to the operation, which is most  acceptable for the use of electrical equipment for electrical networks  and protection devices. Leading educational, research and design  organizations were engaged in research on this issue. An analysis of the results of the research showed that switching to 10 kV voltage is  justified and timely. At the same time, 35 kV voltage is not removed  from the agenda, which is technically feasible and economically  justified, but there are problems with the safety of its operation in  underground workings, which requires appropriate refinement. This  level of voltage will improve the quality of electricity.Conclusions: 1. Application of 35 kV voltage in the underground power supply system of coal and ore mines is advisable at a depth of more than 1000 m with a maximum load of at least 1000 kVA at the  level of the stem cables.2. Application of 35 kV voltage in underground electrical networks will allow to significantly improve the quality indicators of voltage,  reliability, and economy of the system due to the current unloading  of the most important element of SES, such as stem cables.3. Analysis of the main parameters and characteristics of electrical mine electrical equipment gives reason to believe that it allows  implementing a trend of 35 kV deep input to deep horizons of mines  (mines) and placement of 35/6 kV substations on working horizons.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012015
Author(s):  
Shengqing Li ◽  
Xinluo Li ◽  
Qiang Wu ◽  
Xiafei Long

Abstract In order to further optimize the output current harmonic suppression effect of photovoltaic grid-connected inverters, a composite control strategy of LCL type photovoltaic grid-connected inverter output current is proposed. This strategy combines proportional complex integral (PCI) control and repetitive control (RC) in parallel, draws a composite control block diagram, introduces a transfer function, and designs PCI and RC control parameters. Prove that the compound control can reduce current harmonics, achieved the purpose of reducing the steady-state error of the fundamental frequency. And adopts a new PCI composite control strategy, which helps to save the cost of the control system. By building the MATLAB/Simulink simulation platform and establishing the PCI+RC composite control model of LCL photovoltaic grid-connected inverter, the comparison of the simulation results shows that compared with the PI+RC control strategy, the total harmonic distortion rate of the grid-connected current is reduced by 25.77. %, significantly improving the quality of grid-connected current.


Sign in / Sign up

Export Citation Format

Share Document