A novel battery charger operated from random sound sources or air pressure

Author(s):  
G. R. Ahmed Jamal ◽  
Hamidul Hassan ◽  
Amitav Das ◽  
Jannatul Ferdous ◽  
Sharmin A. Lisa
2019 ◽  
Vol 62 (5) ◽  
pp. 1326-1337 ◽  
Author(s):  
Brittany L. Perrine ◽  
Ronald C. Scherer ◽  
Jason A. Whitfield

Purpose Oral air pressure measurements during lip occlusion for /pVpV/ syllable strings are used to estimate subglottal pressure during the vowel. Accuracy of this method relies on smoothly produced syllable repetitions. The purpose of this study was to investigate the oral air pressure waveform during the /p/ lip occlusions and propose physiological explanations for nonflat shapes. Method Ten adult participants were trained to produce the “standard condition” and were instructed to produce nonstandard tasks. Results from 8 participants are included. The standard condition required participants to produce /pːiːpːiː.../ syllables smoothly at approximately 1.5 syllables/s. The nonstandard tasks included an air leak between the lips, faster syllable repetition rates, an initial voiced consonant, and 2-syllable word productions. Results Eleven oral air pressure waveform shapes were identified during the lip occlusions, and plausible physiological explanations for each shape are provided based on the tasks in which they occurred. Training the use of the standard condition, the initial voice consonant condition, and the 2-syllable word production increased the likelihood of rectangular oral air pressure waveform shapes. Increasing the rate beyond 1.5 syllables/s improved the probability of producing rectangular oral air pressure signal shapes in some participants. Conclusions Visual and verbal feedback improved the likelihood of producing rectangular oral air pressure signal shapes. The physiological explanations of variations in the oral air pressure waveform shape may provide direction to the clinician or researcher when providing feedback to increase the accuracy of estimating subglottal pressure from oral air pressure.


1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


1998 ◽  
Vol 70 (1) ◽  
pp. 149
Author(s):  
T Kokuga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document