subglottal pressure
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Emiro J. Ibarra ◽  
Jesús A. Parra ◽  
Gabriel A. Alzamendi ◽  
Juan P. Cortés ◽  
Víctor M. Espinoza ◽  
...  

The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function.


2021 ◽  
Vol 11 (12) ◽  
pp. 5469
Author(s):  
Takeshi Ikuma ◽  
Andrew J. McWhorter ◽  
Lacey Adkins ◽  
Melda Kunduk

Pathological vocal folds are known to exhibit multiple oscillation patterns, depending on tissue imbalance, subglottal pressure level, and other factors. This includes mid-phonation changes due to bifurcations in the underlying voice source system. Knowledge of when changes in oscillation patterns occur is helpful in the assessments of voice disorders, and the knowledge could be transformed into useful objective measures. Mid-phonation bifurcations can occur in rapid succession; hence, a fast classification of oscillation pattern is critical to minimize the averaging of data across bifurcations. This paper proposes frequency-ratio based short-term measures, named harmonic disturbance factor (HDF) and biphonic index (BI), towards the detection of the bifurcations. For the evaluation of HDF and BI, a frequency selection algorithm for glottal source signals is devised, and its efficacy is demonstrated with the glottal area waveforms of four cases, representing the wide range of oscillatory behaviors. The HDF and BI exhibit clear transitions when the voice bifurcations are apparent in the spectrograms. The presented proof-of-concept experiment’s outcomes warrant a larger scale study to formalize the parameters of the frequency selection algorithm.


2021 ◽  
Vol 64 (3) ◽  
pp. 776-791
Author(s):  
Jim R. Lamb ◽  
Austin J. Scholp ◽  
Jack J. Jiang

Purpose The goal of this study was to present vocal aerodynamic measurements from pediatric and adult participant pools. There are a number of anatomical changes involving the larynx and vocal folds that occur as children age and become adults. Data were collected using two methods of noninvasive aerodynamic assessment: mechanical interruption and labial interruption. Method A total of 154 participants aged 4–24 years old took part in this study. Ten trials were performed for both methods of airway interruption. To perform mechanical interruption, participants phonated /α/ for 10 s trials while a balloon valve interrupted phonation 5 times. For labial interruption, participants said /pα/ 5 times at comfortable and quiet volumes. Aerodynamic measures included subglottal pressure, phonation threshold pressure, mean airflow, laryngeal resistance, and others. Results One hundred one participants (51 females) successfully completed testing with both methods. Eight out of 20 measurements were found to have a statistically significant effect of participant age on measurements. Sex alone had a significant effect on vocal efficiency for the labial quiet method. Conclusions The data discussed here can be used to view age and sex trends in vocal aerodynamic measurements. When using either method of mechanical or labial interruption, participant age needs to be taken into account to properly interpret several aerodynamic parameters. A participant's sex is not as important when using these methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugo Lehoux ◽  
Vít Hampala ◽  
Jan G. Švec

AbstractExcised larynges serve as natural models for studying behavior of the voice source. Acoustic resonances inside the air-supplying tubes below the larynx (i.e., subglottal space), however, interact with the vibratory behavior of the larynges and obscure their inherent vibration properties. Here, we explore a newly designed anechoic subglottal space which allows removing its acoustic resonances. We performed excised larynx experiments using both anechoic and resonant subglottal spaces in order to analyze and compare, for the very first time, the corresponding subglottal pressures, electroglottographic and radiated acoustic waveforms. In contrast to the resonant conditions, the anechoic subglottal pressure waveforms showed negligible oscillations during the vocal fold contact phase, as expected. When inverted, these waveforms closely matched the inverse filtered radiated sound waveforms. Subglottal resonances modified also the radiated sound pressures (Level 1 interactions). Furthermore, they changed the fundamental frequency (fo) of the vocal fold oscillations and offset phonation threshold pressures (Level 2 interactions), even for subglottal resonance frequencies 4–10 times higher than fo. The obtained data offer the basis for better understanding the inherent vibratory properties of the vocal folds, for studying the impact of structure-acoustic interactions on voice, and for validation of computational models of voice production.


Author(s):  
Taehong Cho ◽  
Doris Mücke

Prosodic research in speech production usually focuses on the way the prosodic structure influences the phonetic implementation of segmental and suprasegmental features. The realization of a tone, for instance, involves not only dynamic changes so as to regulate the vocal fold vibration to produce f0 contours, but also the movement of articulators to simultaneously produce consonants and vowels. Articulatory measuring techniques help us to directly observe how these two systems are coordinated in the spatio-temporal dimension. A number of such techniques are discussed, along with examples indicating how each technique may be or has been used to study various aspects of prosody. They include laryngoscopy and electroglottography to examine laryngeal events associated with vocal fold vibration; systems such as electromagnetic articulography, an optoelectronic device, electropalatography, and ultrasound systems to explore supralaryngeal articulatory events; and aerodynamic measurement systems to record oral/subglottal pressure and oral/nasal flow.


2020 ◽  
Author(s):  
Molly E. Stewart ◽  
Byron D. Erath

AbstractBlunt force trauma to the larynx, which may result from motor vehicle collisions, sports activities, etc., can cause significant damage, often leading to displaced fractures of the laryngeal cartilages, thereby disrupting vocal function. Current surgical interventions primarily focus on airway restoration to stabilize the patient, with restoration of vocal function usually being a secondary consideration. Due to laryngeal fracture, asymmetric vertical misalignment of the left or right vocal fold (VF) in the inferior-superior direction often occurs. This affects VF closure and can lead to a weak, breathy voice requiring increased vocal effort. It is unclear, however, how much vertical VF misalignment can be tolerated before voice quality degrades significantly. To address this need, the influence of inferior-superior VF displacement on phonation is investigated in 1.0 mm increments using synthetic, self-oscillating VF models in a physiologically-representative facility. Acoustic (SPL, frequency, H1-H2, jitter, and shimmer), kinematic (amplitude and phase differences), and aerodynamic parameters (flow rate and subglottal pressure) are investigated as a function of inferior-superior vertical displacement. Significant findings include that once the inferior-superior medial length of the VF is surpassed, sustained phonation degrades significantly, becoming severely pathological. If laryngeal reconstruction approaches can ensure VF contact is maintained during phonation (i.e., vertical displacement doesn’t surpass VF medial length), better vocal outcomes are expected.


2020 ◽  
Vol 41 (6) ◽  
pp. 102727
Author(s):  
Eri Miyata ◽  
Makoto Miyamoto ◽  
Osamu Shiromoto ◽  
Yoshiki Kobayashi ◽  
Masao Yagi ◽  
...  

2020 ◽  
Vol 63 (10) ◽  
pp. 3311-3325
Author(s):  
Brittany L. Perrine ◽  
Ronald C. Scherer

Purpose The goal of this study was to determine if differences in stress system activation lead to changes in speaking fundamental frequency, average oral airflow, and estimated subglottal pressure before and after an acute, psychosocial stressor. Method Eighteen vocally healthy adult females experienced the Trier Social Stress Test (TSST) to activate the hypothalamic–pituitary–adrenal axis. The TSST includes public speaking and performing mental arithmetic in front of an audience. At seven time points, three before the stressor and four after the stressor, the participants produced /pa/ repetitions, read the Rainbow Passage, and provided a saliva sample. Measures included (a) salivary cortisol level, (b) oral airflow, (c) estimated subglottal pressure, and (d) speaking fundamental frequency from the second sentence of the Rainbow Passage. Results Ten of the 18 participants experienced a hypothalamic–pituitary–adrenal axis response to stress as indicated by a 2.5-nmol/L increase in salivary cortisol from before the TSST to after the TSST. Those who experienced a response to stress had a significantly higher speaking fundamental frequency before and immediately after the stressor than later after the stressor. No other variable varied significantly due to the stressor. Conclusions This study suggests that the idiosyncratic and inconsistent voice changes reported in the literature may be explained by differences in stress system activation. In addition, laryngeal aerodynamic measures appear resilient to changes due to acute stress. Further work is needed to examine the influence of other stress systems and if these findings hold for dysphonic individuals.


2020 ◽  
Vol 63 (7) ◽  
pp. 2202-2218
Author(s):  
Katherine L. Marks ◽  
Jonathan Z. Lin ◽  
James A. Burns ◽  
Tiffiny A. Hron ◽  
Robert E. Hillman ◽  
...  

Purpose Given the established linear relationship between neck surface vibration magnitude and mean subglottal pressure (Ps) in vocally healthy speakers, the purpose of this study was to better understand the impact of the presence of a voice disorder on this baseline relationship. Method Data were obtained from participants with voice disorders representing a variety of glottal conditions, including phonotraumatic vocal hyperfunction, nonphonotraumatic vocal hyperfunction, and unilateral vocal fold paralysis. Participants were asked to repeat /p/-vowel syllable strings from loud-to-soft loudness levels in multiple vowel contexts (/pa/, /pi/, /pu/) and pitch levels (comfortable, higher than comfortable, lower than comfortable). Three statistical metrics were computed to analyze the regression line between neck surface accelerometer (ACC) signal magnitude and Ps within and across pitch, vowel, and voice disorder category: coefficient of determination ( r 2 ), slope, and intercept. Three linear mixed-effects models were used to evaluate the impact of voice disorder category, pitch level, and vowel context on the relationship between ACC signal magnitude and Ps. Results The relationship between ACC signal magnitude and Ps was statistically different in patients with voice disorders than in vocally healthy controls; patients exhibited higher levels of Ps given similar values of ACC signal magnitude. Negligible effects were found for pitch condition within each voice disorder category, and negligible-to-small effects were found for vowel context. The mean of patient-specific r 2 values was .63, ranging from .13 to .92. Conclusions The baseline, linear relationship between ACC signal magnitude and Ps is affected by the presence of a voice disorder, with the relationship being participant-specific. Further work is needed to improve ACC-based prediction of Ps, across treatment, and during naturalistic speech production.


2020 ◽  
Vol 123 (3) ◽  
pp. 966-979 ◽  
Author(s):  
Tobias Riede ◽  
Charles Schaefer ◽  
Amy Stein

Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male’s interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation. NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.


Sign in / Sign up

Export Citation Format

Share Document