air pressure
Recently Published Documents


TOTAL DOCUMENTS

2196
(FIVE YEARS 490)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
pp. 152808372110709
Author(s):  
Ashraf Nawaz Khan ◽  
Vijay Goud ◽  
Ramasamy Alagirusamy ◽  
Puneet Mahajan ◽  
Apurba Das

In the present study, an attempt has been made to coat the non-conductive Ultra-high Molecular Weight Polyethylene (UHMWPE) fibers with Low-Density Polyethylene (LDPE) powder. In order to enable the deposition of electrostatically charged LDPE powder onto the fiber surface, UHMWPE fibers are dipped into a surface modification bath to impart momentary conductivity. Further, Box Behnken’s experimental design is used to optimize the processing parameters for Fiber Volume Fraction (Vf) for this wet electrostatic spray coating process. An experimental multi-parametric equation is acquired through response surface methodology to ascertain the association amid the process parameters such as processing temperature (A), conveying air pressure (B), and gun nozzle angle (C) on the output response of Vf. The process parametric values for A, B, and C are varied from 225°C to 245°C, 0.2 bar to 0.4 bar, and 0° to 120° respectively. The Vf obtained is in the range of 37.02%–56.28% depending on the combination of process parametric values. Powder pick-up increases with an increase in the gun nozzle angle. An increase in conveying air pressure and temperature of the hot air oven leads to an increase in powder deposition. The values predicted from the model are observed to be in close proximity (94.59%) to the experimental results. Gun nozzle angle is the principal parameter affecting the matrix deposition on the fiber surface in comparison to other process parameters.


Author(s):  
Kitisak Chimklin ◽  
Chatchapol Chungchoo

In Hard Disk Drive (HDD) manufacturing, there is always a concern about the cutting defects that are caused by residual cutting chips. Only a small amount of 10 μm chips (act as the air gap) can cause the workpiece to tilt and shift from the correct position, and thus affect the dimension of the workpiece (mainly the Base HDD). For this reason, researchers adapted the adjustable micrometer as a simulation device that resembles the air gap for the design of the Air Gap Sensor Module. The design of experiments using response surface methodology will be studied to confirm the appropriate factors of the prototype. This study reports the optimization of the main factors that affect Air Gap Sensor Module condition: Air Nozzle Diameter 2.303 mm, Air Pressure 0.1 MPa, and Sampling Time 645 ms, which has a high square of the coefficient correlation (R-squared = 99.0%) with a close relationship between gap distance and air pressure. The relationship between these variables is mostly linear. The R-squared error percentage of actual value is less than 0.93% compared to predicted value. The mathematical model results and experimental values were consistent and able to predict response variables. The Air Gap Sensor Module can provide the measurement results in micron ccuracy and displays light and beep to confirm as acceptable or reject gap conditions with the uncertainty of measurement ± 0.001 mm.


Author(s):  
Tobias Hauser ◽  
Raven T. Reisch ◽  
Tobias Kamps ◽  
Alexander F. H. Kaplan ◽  
Joerg Volpp

AbstractAcoustic emissions in directed energy deposition processes such as wire arc additive manufacturing and directed energy deposition with laser beam/metal are investigated within this work, as many insights about the process can be gained from this. In both processes, experienced operators can hear whether a process is running stable or not. Therefore, different experiments for stable and unstable processes with common process anomalies were carried out, and the acoustic emissions as well as process camera images were captured. Thereby, it was found that stable processes show a consistent mean intensity in the acoustic emissions for both processes. For wire arc additive manufacturing, it was found that by the Mel spectrum, a specific spectrum adapted to human hearing, the occurrence of different process anomalies can be detected. The main acoustic source in wire arc additive manufacturing is the plasma expansion of the arc. The acoustic emissions and the occurring process anomalies are mainly correlating with the size of the arc because that is essentially the ionized volume leading to the air pressure which causes the acoustic emissions. For directed energy deposition with laser beam/metal, it was found that by the Mel spectrum, the occurrence of an unstable process can also be detected. The main acoustic emissions are created by the interaction between the powder and the laser beam because the powder particles create an air pressure through the expansion of the particles from the solid state to the liquid state when these particles are melted. These findings can be used to achieve an in situ quality assurance by an in-process analysis of the acoustic emissions.


Author(s):  
BHARATH KUMAR A. ◽  
GIRENDRA KUMAR GAUTAM ◽  
SYED SALMAN B.

Objective: The purpose of this research is to find the best way for designing carvedilol pulsatile drug delivery system capsules. Methods: The research paves the way to improve the method of preparing carvedilol pulsatile drug delivery by adjusting critical material attributes (CMA) such as coating polymer concentration, critical process parameters (CPP) such as inlet temperature and atomizing air pressure, and their impact on critical quality attributes (CQA) like particle size (PS in nm), entrapment efficiency in percentage (% EE) and amount of drug delivered in percent (%ADR) at 12 h in the carvedilol pulsatile pellets filled capsules by applying the Box-Behnken design. By varying the polymer concentration and process parameters, nearly 15 formulations were created. Results: Based on the influence of CMA, CPP on CQA, the formulation CP13 was determined to be the most optimized formulation among the 15 formulations. The optimized levels of CMA were found to be-1 level of coating polymer concentration and CPP was found to be-1 level of inlet temperature, 0 level of atomizing air pressure and it optimized CQA like PS was found to be 1017.5±8.4 nm, % EE was found to be 96.8±2.8 %, % ADR at 12 h was found to be 88.4±3.4 %. Carvedilol Pulsatile drug delivery system was designed by using optimized fluidized bed coater in order to decrease the usage of attributes, decrease the productivity cost and enhance the usage of specific attributes at fixed concentration for further manufacturing scale. Conclusion: By the current results it was concluded that the optimized CMA and CPP that shown in the results are the suitable attributes for the best formulation of carvedilol pulsatile drug delivery system capsules.


Robotica ◽  
2022 ◽  
pp. 1-15
Author(s):  
Zhaoyu Liu ◽  
Yuxuan Wang ◽  
Jiangbei Wang ◽  
Yanqiong Fei ◽  
Qitong Du

Abstract The aim of this work is to design and model a novel modular bionic soft robot for crawling and crossing obstacles. The modular bionic soft robot is composed of several serial driving soft modules, each module is composed of two parallel soft actuators. By analyzing the influence of working pressure and manufacturing size on the stiffness of the modular bionic soft robot, the nonlinear variable stiffness model of the modular bionic soft robot is established. Based on this model, the spatial states and design parameters of the modular bionic soft robot are discussed when the modular bionic soft robot can pass through the obstacle. Experiments show that when the inflation air pressure of the modular bionic soft robot is 70 kPa, its speed can reach 7.89 mm/s and the height of obstacles passed by it can reach 42.8 mm. The feasibility of the proposed modular bionic soft robot and nonlinear variable stiffness model is verified by locomotion experiments.


Author(s):  
Yi Luan ◽  
Hongfeng Yang ◽  
Baoshan Wang ◽  
Wei Yang ◽  
Weitao Wang ◽  
...  

Abstract Temporal changes of seismic velocities in the Earth’s crust can be induced by stress perturbations or material damage from reasons such as strong ground motion, volcanic activities, and atmospheric effects. However, monitoring the temporal changes remains challenging, because most of them generally exist in small travel-time differences of seismic data. Here, we present an excellent case of daily variations of the subsurface structure detected using a large-volume air-gun source array of one-month experiment in Binchuan, Yunnan, southwestern China. The seismic data were recorded by 12 stations within ∼10 km away from the source and used to detect velocity change in the crust using the deconvolution method and sliding window cross-correlation method, which can eliminate the “intercept” error when cutting the air-gun signals and get the real subsurface variations. Furthermore, the multichannel singular spectral analysis method is used to separate the daily change (∼1 cycle per day) from the “long-period” change (<1 cycle per day) or noise. The result suggests that the daily velocity changes at the two nearest stations, 53277 (offset ∼700 m) and 53278 (offset ∼2.3 km), are well correlated with air temperature variation with a time lag of 5.0 ± 1.5 hr, which reflects that the velocity variations at the subsurface are likely attributed to thermoelastic strain. In contrast, both daily and long-period velocity changes at distant stations correlate better with the varying air pressure than the temperature, indicating that the velocity variations at deeper depth are dominated by the elastic loading of air pressure. Our results demonstrate that the air-gun source is a powerful tool to detect the velocity variation of the shallow crust media.


2022 ◽  
Vol 955 (1) ◽  
pp. 012030
Author(s):  
A Safitri ◽  
S I Wahyudi ◽  
Soedarsono

Abstract The provision of clean water for the community is not optimal, so that the distribution of water is not evenly distributed. The distribution network of PDAM Tirta Jati serves Taman Tukmudal Indah Housing, Sumber District, which is supplied from Cigusti springs with a gravity drainage system, currently reaching 1,037 units of house connections. Geographic Information Systems visualize spatial data related to positions on the earth’s surface. Analysis of Clean Water Service Capacity in the discussion of clean water quality that has been tested in the Bandung Institute of Technology laboratory. The samples tested for analysis showed that the clean air quality met the quality standards. The standard of clean water needs is 60 liters/person/day. Continuity shows that the clean air pressure is not in accordance with the minimum standards that have been determined because most of the air pressure is still low. The lowest air pressure = 1.00 meters, and the highest = 50 meters, the lowest average air pressure is at 22:00 and the highest is at 09:00. The minimum air pressure that must be met is 1.0 atm. This pattern is expected to maintain the quality, quantity, and continuity of clean water services.


2022 ◽  
Vol 68 ◽  
pp. 102754
Author(s):  
Yufang Chen ◽  
Hongdan Wan ◽  
Yao Lu ◽  
Ziji Wang ◽  
Weiwen Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document