Classification of Land Cover from Sentinel-2 Imagery Using Supervised Classification Technique (Preliminary Study)

Author(s):  
Eka Miranda ◽  
Achmad Benny Mutiara ◽  
Ernastuti ◽  
Wahvu Catur Wibowo
2013 ◽  
Vol 40 (2) ◽  
pp. 419-428 ◽  
Author(s):  
Carlos H. Wachholz de Souza ◽  
Erivelto Mercante ◽  
Victor H. R. Prudente ◽  
Diego D.D. Justina

Author(s):  
Ewa Gromny ◽  
Stanisław Lewiński ◽  
Marcin Rybicki ◽  
Radosław Malinowski ◽  
Michał Krupiński ◽  
...  

2017 ◽  
Vol 4 (11) ◽  
pp. 171120 ◽  
Author(s):  
Olapeju Y. Onamuti ◽  
Emmanuel C. Okogbue ◽  
Israel R. Orimoloye

Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08–3.39%) in 1987–2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8–17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44–10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.


2005 ◽  
Vol 26 (7) ◽  
pp. 1347-1362 ◽  
Author(s):  
A. R. S. Marçal ◽  
J. S. Borges ◽  
J. A. Gomes ◽  
J. F. Pinto Da Costa

2019 ◽  
Vol 0 (66) ◽  
pp. 116-127
Author(s):  
Oleksandr Melnyk ◽  
Volodymyr Voloshyn ◽  
Pavlo Manko ◽  
Mykhailo Voloshyn
Keyword(s):  

2018 ◽  
Author(s):  
Jonathan G Escobar-Flores ◽  
Carlos A Lopez-Sanchez ◽  
Sarahi Sandoval ◽  
Marco A Marquez-Linares ◽  
Christian Wehenkel

Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US) and also of northern Baja California (Mexico). This subspecies is distributed as a relict in the geographically isolated arid Sierra La Asamblea at elevations of between 1,010 and 1,631 m, with mean annual precipitation levels of between 184 and 288 mm. The aim of this research was i) to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea, Baja California (Mexico) by using Sentinel-2 images, and ii) to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that i) Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to higher resolution (x3) and increased number of bands (x2) relative to Landsat-8 , and ii) the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine where conifers can become established and persist. Methods. An atmospherically corrected a 12-bit Sentinel-2A MSI image with ten spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index. Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multivariate binominal logistical regression and Random Forest classification including cross valuation (10-fold) were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Results. We estimated, using supervised classification of Sentinel-2 satellite images, that P. monophylla covers 6,653 ± 319 ha in the isolated Sierra La Asamblea. The NDVI was one of the variables that contributed to the prediction and clearly separated the forest cover (NDVI > 0.35) from the other vegetation cover (NDVI < 0.20). The ruggedness was the most influential environmental predictor variable and indicated that the probability of P. monophylla occurrence was higher than 50% when the degree of ruggedness was greater than 17.5 m. When average temperature in the warmest month increased from 23.5 to 25.2 °C, the probability of occurrence of P. monophylla decreased. Discussion. The classification accuracy was similar to that reported in other studies using Sentinel-2A MSI images. Ruggedness is known to generate microclimates and provides shade that decreases evapotranspiration from pines in desert environments. Identification of P. monophylla in the Sierra La Asamblea as the most southern populations represents an opportunity for research on climatic tolerance and community responses to climate variability and change.


2018 ◽  
Author(s):  
Jonathan G Escobar-Flores ◽  
Carlos A Lopez-Sanchez ◽  
Sarahi Sandoval ◽  
Marco A Marquez-Linares ◽  
Christian Wehenkel

Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US) and also of northern Baja California (Mexico). This subspecies is distributed as a relict in the geographically isolated arid Sierra La Asamblea at elevations of between 1,010 and 1,631 m, with mean annual precipitation levels of between 184 and 288 mm. The aim of this research was i) to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea, Baja California (Mexico) by using Sentinel-2 images, and ii) to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that i) Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to higher resolution (x3) and increased number of bands (x2) relative to Landsat-8 , and ii) the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine where conifers can become established and persist. Methods. An atmospherically corrected a 12-bit Sentinel-2A MSI image with ten spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index. Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multivariate binominal logistical regression and Random Forest classification including cross valuation (10-fold) were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Results. We estimated, using supervised classification of Sentinel-2 satellite images, that P. monophylla covers 6,653 ± 46 ha in the isolated Sierra La Asamblea. The NDVI was one of the variables that contributed to the prediction and clearly separated the forest cover (NDVI > 0.35) from the other vegetation cover (NDVI < 0.20). The ruggedness was the most influential environmental predictor variable and indicated that the probability of P. monophylla occurrence was higher than 50% when the degree of ruggedness was greater than 17.5 m. When average temperature in the warmest month increased from 23.5 to 25.2 °C, the probability of occurrence of P. monophylla decreased. Discussion. The classification accuracy was similar to that reported in other studies using Sentinel-2A MSI images. Ruggedness is known to generate microclimates and provides shade that decreases evapotranspiration from pines in desert environments. Identification of P. monophylla in the Sierra La Asamblea as the most southern populations represents an opportunity for research on climatic tolerance and community responses to climate variability and change.


Sign in / Sign up

Export Citation Format

Share Document