Adaptive NN dynamic surface control for a class of uncertain pure-feedback systems

Author(s):  
XiaoQiang Li ◽  
Leipo Liu ◽  
Zhumu Fu ◽  
Lan Yuan
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Cheng He ◽  
Jian Wu ◽  
Jin Ying ◽  
Jiyang Dai ◽  
Zhe Zhang ◽  
...  

In order to solve the problem of unknown parameter drift in the nonlinear pure-feedback system, a novel nonlinear pure-feedback system is proposed in which an unconventional coordinate transformation is introduced and a novel unconventional dynamic surface algorithm is designed to eliminate the problem of “calculation expansion” caused by the use of backstepping in the pure-feedback system. Meanwhile, a sufficiently smooth projection algorithm is introduced to suppress the parameter drift in the nonlinear pure-feedback system. Simulation experiments demonstrate that the designed controller ensures the global and ultimate boundedness of all signals in the closed-loop system and the appropriate designed parameters can make the tracking error arbitrarily small.


Sign in / Sign up

Export Citation Format

Share Document