Noise level estimation using weak textured patches of a single noisy image

Author(s):  
Xinhao Liu ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhuang Fang ◽  
Xuming Yi ◽  
Liming Tang

Image denoising is an important problem in many fields of image processing. Boosting algorithm attracts extensive attention in recent years, which provides a general framework by strengthening the original noisy image. In such framework, many classical existing denoising algorithms can improve the denoising performance. However, the boosting step is fixed or nonadaptive; i.e., the noise level in iteration steps is set to be a constant. In this work, we propose a noise level estimation algorithm by combining the overestimation and underestimation results. Based on this, we further propose an adaptive boosting algorithm that excludes intricate parameter configuration. Moreover, we prove the convergence of the proposed algorithm. Experimental results that are obtained in this paper demonstrate the effectiveness of the proposed adaptive boosting algorithm. In addition, compared with the classical boosting algorithm, the proposed algorithm can get better performance in terms of visual quality and peak signal-to-noise ratio (PSNR).


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Hanlin Tan ◽  
Huaxin Xiao ◽  
Shiming Lai ◽  
Yu Liu ◽  
Maojun Zhang

In traditional image denoising, noise level is an important scalar parameter which decides how much the input noisy image should be smoothed. Existing noise estimation methods often assume that the noise level is constant at every pixel. However, real-world noise is signal dependent, or the noise level is not constant over the whole image. In this paper, we attempt to estimate the precise and pixelwise noise level instead of a simple global scalar. To the best of our knowledge, this is the first work on the problem. Particularly, we propose a deep convolutional neural network named “deep residual noise estimator” (DRNE) for pixelwise noise-level estimation. We carefully design the architecture of the DRNE, which consists of a stack of customized residual blocks without any pooling or interpolation operation. The proposed DRNE formulates the process of noise estimation as pixel-to-pixel prediction. The experimental results show that the DRNE can achieve better performance on nonhomogeneous noise estimation than state-of-the-art methods. In addition, the DRNE can bring denoising performance gains in removing signal-dependent Gaussian noise when working with recent deep learning denoising methods.


2017 ◽  
Vol 25 (6) ◽  
pp. 907-926 ◽  
Author(s):  
Ti Bai ◽  
Hao Yan ◽  
Luo Ouyang ◽  
David Staub ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document