dark channel prior
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 161)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 233
Author(s):  
Weijie Chen ◽  
Zhenhong Jia ◽  
Jie Yang ◽  
Nikola K. Kasabov

Compared with single-band remote sensing images, multispectral images can obtain information on the same target in different bands. By combining the characteristics of each band, we can obtain clearer enhanced images; therefore, we propose a multispectral image enhancement method based on the improved dark channel prior (IDCP) and bilateral fractional differential (BFD) model to make full use of the multiband information. First, the original multispectral image is inverted to meet the prior conditions of dark channel theory. Second, according to the characteristics of multiple bands, the dark channel algorithm is improved. The RGB channels are extended to multiple channels, and the spatial domain fractional differential mask is used to optimize the transmittance estimation to make it more consistent with the dark channel hypothesis. Then, we propose a bilateral fractional differentiation algorithm that enhances the edge details of an image through the fractional differential in the spatial domain and intensity domain. Finally, we implement the inversion operation to obtain the final enhanced image. We apply the proposed IDCP_BFD method to a multispectral dataset and conduct sufficient experiments. The experimental results show the superiority of the proposed method over relative comparison methods.


2021 ◽  
Vol 26 (4) ◽  
pp. 345-354
Author(s):  
Hyeun-Soo Oh ◽  
Young-Soo Han ◽  
Kyung-Ho Lee

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
R.A. Pramunendar ◽  
Dwi Puji Prabowo ◽  
F. Alzami ◽  
R.A. Megantara

Ancaman terhadap kekayaan alam semakin terlihat, oleh karena itu upaya untuk melindungi populasi biota perairan sangat menantang bagi banyak negara. Upaya untuk mengatasi kerusakan terhadap populasi ikan asli telah dilakukan dengan mengurangi populasi ikan invasif melalui teknik penangkapan ikan tradisional. Namun, teknik penangkapan tersebut tidak hanya menangkap spesies ikan invasif tetapi juga spesies asli. Oleh karena itu, masih diperlukan proses manual untuk memilah hasil tangkapan sehingga menghabiskan energi dan waktu. Maka, perlu ditingkatkan kemampuan pengenalan ikan secara otomatis dengan bantuan computer. Telah ada penelitian sebelumnya untuk mengenali jenis-jenis ikan, namun tidak banyak yang mempertimbangkan adanya noice atau artefak-artefak yang timbul karena kondisi bawah air serta efek fitur-fitur ikan yang saling berkaitan. Oleh karena itu dalam penelitian ini, peneliti  ini mengusulkan untuk melakukan analisis dampak pre-processing dari kombinasi algoritma CLAHE dan DCP yang diterapkan dalam klasifikasi ikan dengan Random Forest. Pre-processing yang yang diberikan bertujuan untuk mengatasi artefak atau noice yang timbul pada citra bawah air dan mengatasi efek dari fitur-fitur keragaman jenis ikan. Sehingga diharapkan mampu menghasilkan klasifikasi yang lebih baik dari penelitian sebelumnya. Klasifikasi dengan menggunakan Random Forest (RF) dengan perbaikan citra Dark Channel Prior (DCP) dan Contract Limited Adaptive Histogram Equalization (CLAHE), terbukti memberikan nilai akurasi rata-rata yang cukup tinggi yakni sebesar 98.51%, presisi 78.91%, dan recall 36.71%.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 85
Author(s):  
Lingli Guo ◽  
Zhenhong Jia ◽  
Jie Yang ◽  
Nikola K. Kasabov

In low illumination situations, insufficient light in the monitoring device results in poor visibility of effective information, which cannot meet practical applications. To overcome the above problems, a detail preserving low illumination video image enhancement algorithm based on dark channel prior is proposed in this paper. First, a dark channel refinement method is proposed, which is defined by imposing a structure prior to the initial dark channel to improve the image brightness. Second, an anisotropic guided filter (AnisGF) is used to refine the transmission, which preserves the edges of the image. Finally, a detail enhancement algorithm is proposed to avoid the problem of insufficient detail in the initial enhancement image. To avoid video flicker, the next video frames are enhanced based on the brightness of the first enhanced frame. Qualitative and quantitative analysis shows that the proposed algorithm is superior to the contrast algorithm, in which the proposed algorithm ranks first in average gradient, edge intensity, contrast, and patch-based contrast quality index. It can be effectively applied to the enhancement of surveillance video images and for wider computer vision applications.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 101
Author(s):  
Ho Sang Lee

A sandstorm image has features similar to those of a hazy image with regard to the obtaining process. However, the difference between a sand dust image and a hazy image is the color channel balance. In general, a hazy image has no color cast and has a balanced color channel with fog and dust. However, a sand dust image has a yellowish or reddish color cast due to sand particles, which cause the color channels to degrade. When the sand dust image is enhanced without color channel compensation, the improved image also has a new color cast. Therefore, to enhance the sandstorm image naturally without a color cast, the color channel compensation step is needed. Thus, to balance the degraded color channel, this paper proposes the color balance method using each color channel’s eigenvalue. The eigenvalue reflects the image’s features. The degraded image and the undegraded image have different eigenvalues on each color channel. Therefore, if using the eigenvalue of each color channel, the degraded image can be improved naturally and balanced. Due to the color-balanced image having the same features as the hazy image, this work, to improve the hazy image, uses dehazing methods such as the dark channel prior (DCP) method. However, because the ordinary DCP method has weak points, this work proposes a compensated dark channel prior and names it the adaptive DCP (ADCP) method. The proposed method is objectively and subjectively superior to existing methods when applied to various images.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Janarthanan Mathiazhagan ◽  
Sabitha Gauni ◽  
Rajesvari Mohan

Abstract Underwater video regulation is an insightful research field that can help engineers with bettering investigation on the lowered condition. Submerged video preparing has been utilized in a many fields, such as submerged infinitesimal location, landscape examining, mine identification, media transmission connections, and self-proficient lowered vehicles. Be that as it may, submerged video experiences solid assimilation, dissipating, shading contortion, and clamor from the manufactured light sources, causing video obscure, cloudiness, and a somewhat blue or greenish tone. In this way, the improvement can be separated into two techniques, submerged video de-preliminaries and underexposed video concealing remaking. Relentless in remote correspondence structures, for instance 3G, 4G, and so on, a coming crisis is endless deftly of the nonattendance of consistently Radio Frequency (RF) resources; this deterrent in moving speed cannot strengthen the improvement notable for high information speed. So the new innovation of Light-Fidelity (Li-Fi) came into picture. This innovation can be contrasted to that of Wi-Fi and offers points of interest like expanded available spectrum efficiency, effectiveness, security, low idleness and a lot higher speed. Communication is accomplished by exchanging light-emitting diode (LED) lights on and off at a speed higher than what is detectable to the human eye. This paper presents the explanation behind underexposed picture corruption and surveys the cutting-edge knowledge calculations like video reduce hazing algorithm. In this calculation, it uses two different de-hazing methods, simple Dark Channel Prior (DCP) and Approximate Dark Channel Prior (ADCP), to reduce haze in a video.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haoqiang Wu ◽  
Yiran Fu ◽  
Quanxing Zha ◽  
Aidong Chen ◽  
Hongyuan Jing

Under foggy and other severe weather conditions, image acquisition equipment is not effective. It often produces an image with low contrast and low scene brightness, which is difficult to use in other image-based applications. The dark channel prior dehazing algorithm will cause the brightness of the image to decrease and sometimes introduce halos in the sky area. To solve this problem, we proposed a region similarity optimisation algorithm based on a dark channel prior. First, a vector comprising RGB layer dark channel value was obtained as the original atmospheric ambient light, and then, the proposed regional similarity linear function was used to adjust the atmospheric ambient light matrix. Next, the transmittance of different colour channels was derived and the multichannel soft matting algorithm was employed to produce more effective transmittance. Finally, the atmospheric ambient light and transmittance were substituted into the atmospheric scattering model to calculate clean images. Experimental results show that the proposed algorithm outperformed the existing mainstream dehazing algorithms in terms of both visual judgement and quality analysis with nonhomogeneous haze datasets. The algorithm not only improves the image details but also improves the brightness and saturation of the dehazing result; therefore, the proposed algorithm is effective in the restoration of the hazy image.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhou Fang ◽  
Qilin Wu ◽  
Darong Huang ◽  
Dashuai Guan

Dark channel prior (DCP) has been widely used in single image defogging because of its simple implementation and satisfactory performance. This paper addresses the shortcomings of the DCP-based defogging algorithm and proposes an optimized method by using an adaptive fusion mechanism. This proposed method makes full use of the smoothing and “squeezing” characteristics of the Logistic Function to obtain more reasonable dark channels avoiding further refining the transmission map. In addition, a maximum filtering on dark channels is taken to improve the accuracy of dark channels around the object boundaries and the overall brightness of the defogged clear images. Meanwhile, the location information and brightness information of fog image are weighed to obtain more accurate atmosphere light. Quantitative and qualitative comparisons show that the proposed method outperforms state-of-the-art image defogging algorithms.


Sign in / Sign up

Export Citation Format

Share Document